matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenDeterminantenformen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Determinanten" - Determinantenformen
Determinantenformen < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinantenformen: Frage - Äquivalenz beweisen
Status: (Frage) beantwortet Status 
Datum: 23:00 Mi 20.01.2010
Autor: KrabbyPatty

Aufgabe
Es sei X ein K-VR der Dimension n und [mm] \Delta: X^{n} \to [/mm] K eine n-fache Linearform. Man zeige, dass folgende Aussagen äquivalent sind:

(a) [mm] \Delta(x_{1},...,x_{n}) [/mm] = 0, falls unter den Vektoren [mm] x_{1},...,x_{n} [/mm] zwei gleiche sind.

(b) [mm] \Delta(x_{1},...,x_{n}) [/mm] = 0, falls [mm] x_{1},...,x_{n} [/mm] linear abhängig sind.  

Hallo,

ich habe folgende Aufgabe vor mir, es wäre super, wenn jemand von euch mir etwas Hilfestellung dazu geben könnte.
Diesen Beweis habe ich, aber irgendwie hilft mir das nicht weiter:

Für eine Determinantenform [mm] \Delta [/mm] von X gilt: [mm] \Delta(x_{1},...,x_{n}) [/mm] = 0 [mm] \gdw x_{1},...,x_{n} [/mm] linear abhängig.

[mm] \Leftarrow [/mm]
nach Definition einer Determinantenform klar.

[mm] \Rightarrow [/mm]
Wäre [mm] \Delta(x_{1},...,x_{n}) [/mm] = 0 für linear unabhängige [mm] x_{1},...,x_{n} [/mm] (dann ist [mm] (x_{1},...,x_{n}) [/mm] Basis von X), so wäre nach [mm] \Delta(x_{1},...,x_{n}) [/mm] = [mm] (\summe_{\pi \in S_{n}} sgn\pi x_{1\pi(1)}...x_{n\pi(n)}) \Delta(a_{1},...,a_{n}) [/mm]
[mm] \Delta(y_{1},...,y_{n}) [/mm] = 0 für beliebige Vektoren [mm] y_{1},...,y_{n} \in [/mm] X im Widerspruch zu "Es gibt Vektoren [mm] x_{1},...,x_{n} [/mm] aus X mit [mm] \Delta(x_{1},...,x_{n}) \not= [/mm] 0" (Definition einer Determinantenform).

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Determinantenformen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:32 Do 21.01.2010
Autor: SEcki


> Es sei X ein K-VR der Dimension n und [mm]\Delta: X^{n} \to[/mm] K
> eine n-fache Linearform. Man zeige, dass folgende Aussagen
> äquivalent sind:
>  
> (a) [mm]\Delta(x_{1},...,x_{n})[/mm] = 0, falls unter den Vektoren
> [mm]x_{1},...,x_{n}[/mm] zwei gleiche sind.
>  
> (b) [mm]\Delta(x_{1},...,x_{n})[/mm] = 0, falls [mm]x_{1},...,x_{n}[/mm]
> linear abhängig sind.
> Hallo,
>  
> ich habe folgende Aufgabe vor mir, es wäre super, wenn
> jemand von euch mir etwas Hilfestellung dazu geben
> könnte.
>  Diesen Beweis habe ich, aber irgendwie hilft mir das nicht
> weiter:
>
> Für eine Determinantenform [mm]\Delta[/mm] von X gilt:
> [mm]\Delta(x_{1},...,x_{n})[/mm] = 0 [mm]\gdw x_{1},...,x_{n}[/mm] linear
> abhängig.

Stop. Gleich hier. In obiger Aufgabe ist dein [m]\Delta[/m] keine Determinanteform, sondern nur multi-linear. Du musst hier die Äquivalenz der zwei Aussagen zeigen.

SEcki

Bezug
                
Bezug
Determinantenformen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:10 So 24.01.2010
Autor: simplify

hallo,
ich hab dazu auch mal eine frage.
wenn es sich nicht um eine determinantenform handelt,dann weis ich noch weniger was ich dort zeigen soll.
kann mir das vielleicht jemand erklären?
den unterschied den ich dort sehe ist doch nur,dass ich die äquivalenz zwischen linera abhängige vektoren gdw. zwei vektoren gleich sind!?

Bezug
                        
Bezug
Determinantenformen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:05 So 24.01.2010
Autor: SEcki


>  wenn es sich nicht um eine determinantenform handelt,dann
> weis ich noch weniger was ich dort zeigen soll.
>  kann mir das vielleicht jemand erklären?

Naja die Äquivalenz von der ersten und der zweiten Aussage - und das für eine n-fach lineare Abbildung. Wenn die Abbildung 1. erfüllt, erfüllt sie 2. Wenn sie 2. erfüllt, erfüllt sie 1.

>  den unterschied den ich dort sehe ist doch nur,dass ich
> die äquivalenz zwischen linera abhängige vektoren gdw.
> zwei vektoren gleich sind!?

Beim einen ist es 0 bei linear abhängigen Vektoren; das erste ist ein Spezialfall, der aber tatsächlich ausreicht.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]