matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenDeterminantenrang
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Determinanten" - Determinantenrang
Determinantenrang < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinantenrang: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:35 So 03.06.2012
Autor: DudiPupan

Aufgabe
Sei $A [mm] \in K^{m\times n}$. [/mm] Sind [mm] $1\leq [/mm] s [mm] \leq [/mm] n$ und [mm] $1\leq s\leq [/mm] m$, so ist eine [mm] $r\times [/mm] s $ Untermatrix von $A$ eine Matrix, die man durch Streichen von $m-r$ Zeilen und $n-s $ Spalten aus $A$ erhält.
Der Determinantenrang $detrang(A)$ einer Matrix [mm] $A\neq [/mm] 0$ ist das größte [mm] $1\leq [/mm] r [mm] \leq [/mm] min(n,m)$ so, dass eine [mm] $r\times [/mm] r$ Untermatrix $B$ von $A$ existiert mit $detB [mm] \neq [/mm] 0$.
Sei $A [mm] \in K^{n\times n}$ [/mm] mit $A [mm] \neq [/mm] 0$.

(a) Zeigen Sie, dass [mm] $detrang(A)\ge [/mm] rang(A)$

(b) Zeigen Sie, dass $detrang(A) [mm] \leq [/mm] rang(A)$


Guten Tag
ich sitze schon eine weile an der Aufgabe oben, komme aber einfach nicht weiter.
Mir fehlt jeglicher Ansatz und wäre sehr Dankbar über kleine Denkanstöße und Tipps!

Vielen Dank
DudiPupan

        
Bezug
Determinantenrang: Antwort
Status: (Antwort) fertig Status 
Datum: 18:13 So 03.06.2012
Autor: Schadowmaster

moin,

Wie berechnest du den (klassischen) Rang einer Matrix?
Nimmst du dafür den Gaußalgorithmus?
Zeige am besten, dass der Gaußalgorithmus den Determinantenrang nicht änert, indem du es für jede der drei Operationen einzeln zeigst.
Wenn dir das noch nicht reicht dann bedenke, dass das Transponieren einer Matrix die Determinante nicht ändert, du kannst also auch auf die Spalten einen Gaußalgorithmus loslassen (das muss natürlich noch gezeigt werden).
Hast du dann deine Matrix mit dem Zeilen- und Spaltengauß auf eine schöne Form gebracht, so kannst du Rang und Determinantenrang praktisch auf dieselbe Art ablesen und siehst daran, dass sie gleich sind.

lg

Schadowmaster

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]