matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikDezimaldarstellung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Dezimaldarstellung
Dezimaldarstellung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dezimaldarstellung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:00 Di 29.10.2013
Autor: couldbeworse

Aufgabe
Sei [mm] $P=U\left( \left[0,1\right]\right)$ [/mm] die Gleichverteilung auf [mm] $\left[ 0,1\right]$. [/mm] Berechnen Sie die Wahrscheinlichkeiten folgender Ereignisse:
a) Die siebte Nachkommastelle in der Dezimaldarstellung ist gerade
b) Alle Nachkommastellen in der Dezimaldarstellung sind gerade
c) [mm] $\IQ \cap \left[ 0,1\right] [/mm] $
Da die Dezimaldarstellung nicht eindeutig ist, legen Sie sich bitte vorab auf eine eindeutige Variante fest. Führen unterschiedliche Varianten zu verschiedenen Wahrscheinlichkeiten?

Hallo zusammen!

Ich glaube ich mache es mir bei dieser Aufgabe zu einfach, vielleicht kann ja mal jemand drüber gucken:

zu a) Die Wahrscheinlichkeit ist [mm] $\frac{1}{2}$, [/mm] da es egal ist ob ich die erste oder die siebte Nachkommastelle betrachte?

zu b) Die Wahrscheinlichkeit ist [mm] $\prod_{i=1}^{\infty}\frac{1}{2}$, [/mm] da die Wahrscheinlichkeit für jede Nachkommastelle, unabhängig von den vorherigen, wieder [mm] $\frac{1}{2}$ [/mm] ist?

zu c) Die Wahrscheinlichkeit ist Null, da [mm] $\IQ \cap \left[ 0,1\right] [/mm] $ abzählbar ist?

zum Nachsatz: ich hatte jetzt die Darstellung angenommen, in der 1,0 als 0,9999... geschrieben wird. Ich glaube nicht, dass sich die Wahrscheinlichkeiten ändern, da nur abzählbar viele Zahlen abgeändert werden?

Vielen Dank für eure Hilfe!

Gruß couldbeworse

        
Bezug
Dezimaldarstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:32 Di 29.10.2013
Autor: Al-Chwarizmi


> Sei [mm]P=U\left( \left[0,1\right]\right)[/mm] die Gleichverteilung
> auf [mm]\left[ 0,1\right][/mm]. Berechnen Sie die
> Wahrscheinlichkeiten folgender Ereignisse:
>  a) Die siebte Nachkommastelle in der Dezimaldarstellung
> ist gerade
>  b) Alle Nachkommastellen in der Dezimaldarstellung sind
> gerade
>  c) [mm]\IQ \cap \left[ 0,1\right][/mm]
>  Da die Dezimaldarstellung
> nicht eindeutig ist, legen Sie sich bitte vorab auf eine
> eindeutige Variante fest. Führen unterschiedliche
> Varianten zu verschiedenen Wahrscheinlichkeiten?
>  Hallo zusammen!
>  
> Ich glaube ich mache es mir bei dieser Aufgabe zu einfach,
> vielleicht kann ja mal jemand drüber gucken:
>  
> zu a) Die Wahrscheinlichkeit ist [mm]\frac{1}{2}[/mm], da es egal
> ist ob ich die erste oder die siebte Nachkommastelle
> betrachte?
>  
> zu b) Die Wahrscheinlichkeit ist
> [mm]\prod_{i=1}^{\infty}\frac{1}{2}[/mm], da die Wahrscheinlichkeit
> für jede Nachkommastelle, unabhängig von den vorherigen,
> wieder [mm]\frac{1}{2}[/mm] ist?
>  
> zu c) Die Wahrscheinlichkeit ist Null, da [mm]\IQ \cap \left[ 0,1\right][/mm]
> abzählbar ist?
>  
> zum Nachsatz: ich hatte jetzt die Darstellung angenommen,
> in der 1,0 als 0,9999... geschrieben wird. Ich glaube
> nicht, dass sich die Wahrscheinlichkeiten ändern, da nur
> abzählbar viele Zahlen abgeändert werden?
>  
> Vielen Dank für eure Hilfe!
>  
> Gruß couldbeworse


Hallo,

deine Überlegungen sind korrekt. Bei (b) solltest
du noch das zahlenmäßige Resultat angeben.

LG ,   Al-Chw.


Bezug
                
Bezug
Dezimaldarstellung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:56 Di 29.10.2013
Autor: couldbeworse

Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]