matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteDiagonalisierbar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Eigenwerte" - Diagonalisierbar
Diagonalisierbar < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalisierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:16 Di 15.01.2008
Autor: PhilMark

Aufgabe
Man zeige, dass jede Matrix [mm] M=\pmat{ a & b \\ b & a } [/mm] mit Einträgen aus [mm] \IR [/mm] diagonalisierbar ist.

Wie kann ich das beweisen, könnte mir da bitte jmd halfen...
danke im Vorraus.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Diagonalisierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 09:58 Di 15.01.2008
Autor: angela.h.b.


> Man zeige, dass jede Matrix [mm]M=\pmat{ a & b \\ b & a }[/mm] mit
> Einträgen aus [mm]\IR[/mm] diagonalisierbar ist.
>  Wie kann ich das beweisen, könnte mir da bitte jmd
> halfen...

Hallo,

[willkommenmr].

Da Du neu bei uns bist, lies Dir bitte einmal die Forenregeln durch, insbesondere den Passus über eigene Lösungsansätze.

Wir können nämlich nur wissen, wo das Problem liegt, wenn wir sehen, was Du so tust zur Lösung der Aufgabe, und nebenbei erkennt man meist, was gerade dran ist in der Vorlesung.

Falls Ihr bereits ein bißchen etwas über Eigenwerte hattet, würde ich zunächst die Eigenwerte ausrechnen und daraus Schlüsse ziehen.

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]