matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraDiagonalisierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Diagonalisierbarkeit
Diagonalisierbarkeit < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalisierbarkeit: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:37 Mi 10.05.2006
Autor: Fulla

Aufgabe
Es sei A:= [mm] \pmat{ a & b \\ c & d }. [/mm] Finden Sie notwendige und hinreichende Bedingungen an die Koeffizienten a, b, c, d [mm] \in \IR [/mm] für

a) die Trigonalisierbarkeit von A über [mm] \IR, [/mm]
b) die Diagonalisierbarkeit von A über [mm] \IR [/mm] und
c) die Diagonalisierbarkeit von A über [mm] \IC. [/mm]

ich habe diese frage in keinem forum auf anderen internetseiten gestellt.

also, zuerst hab ich
det(A)=ad-bc
und das char. polynom [mm] \chi_{A}(x)=x^{2}-(a+d)x+ad-bc=x^{2}-(a+d)x+det(A) [/mm]
ausgerechnet.

a) eine matrix ist trigonalisierbar, wenn das char. polynom zerfällt.
das ist der fall, wenn det(A)=0, oder wenn die wurzel [mm] \wurzel{(a+d)^{2}-4det(A)}, [/mm] die in der lösungsformel auftaucht, [mm] \ge0 [/mm] ist, d.h. dass [mm] (a+d)^{2}\ge4det(A) [/mm] ist.

was ist denn hier hinreichend bzw. notwendig? und soll ich hier jeweils hinreichende und notwendige, oder hinreichende und zugleich notwendige bedingungen finden?

b) hier komm ich ins straucheln.... kann ich hier mit dem minimalpolynom arbeiten? und wenn ja, wie?

c) hier zerfällt jedes char. polynom. aber weiter komm ich hier auch nicht....

kann mir bitte jemand auf die sprünge helfen?

lieben gruß,
Fulla

        
Bezug
Diagonalisierbarkeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:41 Do 11.05.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]