matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenDiagonalisierbarkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Abbildungen" - Diagonalisierbarkeit
Diagonalisierbarkeit < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalisierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:24 Do 02.02.2012
Autor: durden88

Aufgabe
Berechne Sie das charaktristische Polynom, die Eigenwerte und die Eigenvektoren von [mm] A=\pmat{ 2 & 2&3 \\ 1 & 2&1\\2&-2&1 }. [/mm] Ist A Diagonalisierbar?

Hallo, also mir gehts auch um die Schreibweisen. Ich rechne mal vor:

[mm] det(A-\lambda)=\pmat{ 2-\lambda & 2&3 \\ 1 & 2-\lambda&1\\2&-2&1-\lambda }=\lambda^3-5\lambda^2+2\lambda+8 [/mm]

Was ist eigendlich mein Charakteristisches Polynom?

So jetzt will ich die 0-Stellen herausbekommen, also das ganze=0 und Polynomdivision benutzen:

Durch ausprobieren [mm] \lambda_1=2 [/mm]

Dann bekomme ich durch die P-Q-Formel: [mm] \lambda_2=4 [/mm] und [mm] \lambda_3=-1 [/mm]

So das waren die Eigenwerte oder? Eigenvektoren berechne ich gleich noch. Jetzt hab ich noch eine Frage zur Diagonalisierbarkeit.

Ich habe gelernt, notwendige Bedingung: Die Funktion lässt sich vollständig in Linearfaktoren zerlegen. So und da hab ich mir einfach die Nullstellen genommen und multipliziert: [mm] (\lambda-2)(\lambda-4)(\lambda+1) [/mm] und ausmultipliziert, also klappt das, kann ich es so machen?

Hinreichende Bedingung: Die LF müssen paarweise verschieden sein. Jo und das klappt auch...

Wenn ich die Polynomdivision berechnet habe und die P-Q-Formel benutzt habe, bekomme ich [mm] \lambda_2=4 [/mm] und [mm] \lambda_3=-1 [/mm]

        
Bezug
Diagonalisierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:30 Do 02.02.2012
Autor: schachuzipus

Hallo durden88,


> Berechne Sie das charaktristische Polynom, die Eigenwerte
> und die Eigenvektoren von [mm]A=\pmat{ 2 & 2&3 \\ 1 & 2&1\\ 2&-2&1 }.[/mm]
> Ist A Diagonalisierbar?
>  Hallo, also mir gehts auch um die Schreibweisen. Ich
> rechne mal vor:
>  
> [mm]det(A-\lambda)=\pmat{ 2-\lambda & 2&3 \\ 1 & 2-\lambda&1\\ 2&-2&1-\lambda }=\lambda^3-5\lambda^2+2\lambda+8[/mm]

Mag sein ...

>  
> Was ist eigendlich mein Charakteristisches Polynom?

Na, das, was oben steht: [mm] $\chi(\lambda)=\lambda^3-5\lambda^2+2\lambda+8$ [/mm]

>  
> So jetzt will ich die 0-Stellen herausbekommen, also das
> ganze=0 und Polynomdivision benutzen:
>  
> Durch ausprobieren [mm]\lambda_1=2[/mm]
>  
> Dann bekomme ich durch die P-Q-Formel: [mm]\lambda_2=4[/mm] und
> [mm]\lambda_3=-1[/mm]
>  
> So das waren die Eigenwerte oder?

Jo, wenn's stimmt, sind das die Eigenwerte

> Eigenvektoren berechne
> ich gleich noch. Jetzt hab ich noch eine Frage zur
> Diagonalisierbarkeit.
>  
> Ich habe gelernt, notwendige Bedingung: Die Funktion lässt
> sich vollständig in Linearfaktoren zerlegen. So und da hab
> ich mir einfach die Nullstellen genommen und multipliziert:
> [mm](\lambda-2)(\lambda-4)(\lambda+1)[/mm] und ausmultipliziert,
> also klappt das, kann ich es so machen?

Jo, hier hast du (zum Glück) 3 verschiedene Nullstellen, das Polynom zerfällt vollst. in (paarweise verschiedene) Linearfaktoren, damit ist für jeden Eigenwert die algebraische Vielfachheit 1, damit auch die geometrische Vielfachheit (denn geom. VFH [mm] $\le$ [/mm] algebr. VFH und alg. VFH mind. 1)

Damit kannst du sicher sein, dass die Matrix diagonalisierbar ist.

Krit.: Für jeden Eigenwert muss die algebraische VFH (also die VFH als Nullstelle im char. Polynom) gleich der geometr. VFH (=Dimension des zugeh. Eigenraumes) sein.

>  
> Hinreichende Bedingung: Die LF müssen paarweise
> verschieden sein. Jo und das klappt auch...
>  
> Wenn ich die Polynomdivision berechnet habe und die
> P-Q-Formel benutzt habe, bekomme ich [mm]\lambda_2=4[/mm] und
> [mm]\lambda_3=-1[/mm]  

Das mag stimmen, aber ohne die Rechnung zu sehen, kann man das schlecht beurteilen ...

Gruß

schachuzipus


Bezug
                
Bezug
Diagonalisierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:50 Do 02.02.2012
Autor: durden88

Ok, vielen dank. Vor jedem Rechenschritt muss ich ja eine Bedinungung hinschreiben.

Also zum ausrechnen des Charakteristischen Polynoms reicht es wenn ich schreibe: [mm] \chi(\lambda)= [/mm] Dann meine Matrix [mm] mit-\lambda [/mm] in der Diagonalen und dann die Determinante davon ausrechnen?

Dann bekomm ich ja meine Eigenwerte. Wie ist es bei den Eigenvektoren? Gibt es da auch was, was ich hinschreiben kann, ich möchte nicht nur einfach [mm] \vec{x}= [/mm] hinschreiben...

Bezug
                        
Bezug
Diagonalisierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:12 Do 02.02.2012
Autor: schachuzipus

Hallo nochmal,


> Ok, vielen dank. Vor jedem Rechenschritt muss ich ja eine
> Bedinungung hinschreiben.
>  
> Also zum ausrechnen des Charakteristischen Polynoms reicht
> es wenn ich schreibe: [mm]\chi(\lambda)=[/mm] Dann meine Matrix
> [mm]mit-\lambda[/mm] in der Diagonalen und dann die Determinante
> davon ausrechnen?

Jo, etwa so:

[mm]\chi(\lambda)=\operatorname{det}(A-\lambda\mathbb{E}_3)=\operatorname{det\left[ \ \pmat{...} \ \right]=...=\lambda^3...[/mm]

>  
> Dann bekomm ich ja meine Eigenwerte. Wie ist es bei den
> Eigenvektoren? Gibt es da auch was, was ich hinschreiben
> kann, ich möchte nicht nur einfach [mm]\vec{x}=[/mm]
> hinschreiben...

Irgendwie so:

1) Berechne zu [mm]\lambda_1=...[/mm] den [mm]\operatorname{ker(A-\lambda_1\mathbb{E}_3)[/mm]:

Dann die Matrix hinschreiben und in ZSF bringen und so eine Basis des Kernes bestimmen.

Dann "Ein Eigenvektor zum Eigenwert [mm]\lambda_1=..[/mm] ist [mm]\vec{x}=...[/mm]"

Dann genauso für die anderen beiden Eigenwerte [mm]\lambda_{2,3}[/mm]


Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]