matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteDiagonalisierung einer Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Eigenwerte" - Diagonalisierung einer Matrix
Diagonalisierung einer Matrix < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalisierung einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:35 Fr 04.04.2014
Autor: Kartoffelchen

Aufgabe
Bestimmen Sie die reguläre Matrix S, sodass [mm] $SAS^{-1}$ [/mm] Diagonal ist.

$A = [mm] \begin{pmatrix} 2 & 1 & 1 \\1 & 1 & 0\\1&0&1\end{pmatrix}$ [/mm]

Hiho,

1. Schritt: Eigenwerte bestimmen.
Ich erhalte das charakteristische Polynom [mm] $P_A{t} [/mm] = t(1-t)(t-3)$. Also zerfällt das charakteristische Polynom in Linearfaktoren.

Ich erhalte die Eigenwerte

[mm] $t_1 [/mm] = 0, [mm] t_2 [/mm] = 1, [mm] t_3 [/mm] = 3$.

2. Schritt: Eigenvektoren bestimmen.

[mm] $v_1: [/mm]   (A - [mm] 0E_3)\cdot v_1 [/mm] = 0 <=> A = 0$. Ein normierter Eigenvektor lautet $(-1, 1, 1)$.

[mm] $v_2: [/mm] (A- [mm] 1E_3) \cdot v_2 [/mm] = 0$. Ein normierte Eigenvektor lautet $(0, -1, 1)$.

[mm] $v_3: [/mm] (A- [mm] 3E_3) \cdot v_3 [/mm] = 0$. Ein normierter Eigenvektor lautet $(2,1,1)$.

3.) Schritt: Transformationsmatrix S aufstellen, indem die normierten Eigenvektoren spaltenweise eingetragen werden:

$S = [mm] \begin{pmatrix} -1&0&2\\1&-1&1\\1&1&1 \end{pmatrix}$. [/mm]

Nun ist ja A symmetrisch. Dann sollten die Spaltenvektoren von S paarweise orthogonal sein. Also ist [mm] $S^{-1} [/mm] = [mm] S^T$. [/mm]

Damit erhalte ich schließlich im

4.) Schritt:

$S^TAS = [mm] \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 18 \end{pmatrix}$. [/mm]

Diagonal ist meine Matrix schon. Aber die DIagonalelemente sollen doch die Eigenwerte sein. Meine Eigenwerte sind aber nicht 0,2,18.

=(

        
Bezug
Diagonalisierung einer Matrix: falsche inverse Matrix
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:04 Fr 04.04.2014
Autor: mister_xyz

die inverse Matrix ist falsch!
Geh mal auf
http://www.arndt-bruenner.de/mathe/scripts/inversematrix.htm
und gib da die Matrix ein, die inverse Matrix ist ganz anders als deine

Bezug
        
Bezug
Diagonalisierung einer Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:07 Fr 04.04.2014
Autor: mister_xyz

die korrekte inverse Matrix von S ist: S^-1= [mm] \begin{pmatrix} -1/3&1/3&1/3\\0&-1/2&1/2\\1/3&1/6&1/6 \end{pmatrix} [/mm] $

Bezug
        
Bezug
Diagonalisierung einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 14:38 Fr 04.04.2014
Autor: angela.h.b.


> Bestimmen Sie die reguläre Matrix S, sodass [mm]SAS^{-1}[/mm]
> Diagonal ist.
>  
> [mm]A = \begin{pmatrix} 2 & 1 & 1 \\1 & 1 & 0\\1&0&1\end{pmatrix}[/mm]
>  
> Hiho,
>  
> 1. Schritt: Eigenwerte bestimmen.
>  Ich erhalte das charakteristische Polynom [mm]P_A{t} = t(1-t)(t-3)[/mm].
> Also zerfällt das charakteristische Polynom in
> Linearfaktoren.
>
> Ich erhalte die Eigenwerte
>  
> [mm]t_1 = 0, t_2 = 1, t_3 = 3[/mm].
>  
> 2. Schritt: Eigenvektoren bestimmen.
>  
> [mm]v_1: (A - 0E_3)\cdot v_1 = 0 <=> A = 0[/mm]. Ein normierter
> Eigenvektor lautet [mm](-1, 1, 1)[/mm].
>  
> [mm]v_2: (A- 1E_3) \cdot v_2 = 0[/mm]. Ein normierte Eigenvektor
> lautet [mm](0, -1, 1)[/mm].
>  
> [mm]v_3: (A- 3E_3) \cdot v_3 = 0[/mm]. Ein normierter Eigenvektor
> lautet [mm](2,1,1)[/mm].
>  
> 3.) Schritt: Transformationsmatrix S aufstellen, indem die
> normierten Eigenvektoren spaltenweise eingetragen werden:
>  
> [mm]S = \begin{pmatrix} -1&0&2\\1&-1&1\\1&1&1 \end{pmatrix}[/mm].

Hallo,

Du hast das Normieren, welches Du selbst erwähnst, vergessen.
Daher ist S keine orthogonale Matrix, und deshalb ist ihr Transponiertes  nicht die inverse Matrix.

>  
> Nun ist ja A symmetrisch. Dann sollten die Spaltenvektoren
> von S paarweise orthogonal sein.

Sind sie.
Aber S ist bislang nicht orthogonal, weil die Spalten nicht normiert sind.
Wenn Du das noch tust, dann sollte alles klappen.


>  Also ist [mm]S^{-1} = S^T[/mm].
>  
> Damit erhalte ich schließlich im
>  
> 4.) Schritt:
>  
> [mm]S^TAS = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 18 \end{pmatrix}[/mm].
>  
> Diagonal ist meine Matrix schon. Aber die DIagonalelemente
> sollen doch die Eigenwerte sein. Meine Eigenwerte sind aber
> nicht 0,2,18.
>  
> =(


Bezug
                
Bezug
Diagonalisierung einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:51 Mo 07.04.2014
Autor: Kartoffelchen

Hallo,

es müsste doch auch so funktionieren wie hier
http://page.mi.fu-berlin.de/klarner/lina2_blatt5_loesungen.pdf

d.h. ich invertiere meine Matrix, bestehend aus den Eigenvektoren.
Ich erhalte dann aber

$ S = [mm] \begin{pmatrix} -1&0&2 \\1&1&1\\1&-1&1\end{pmatrix}$ [/mm] sowie
[mm] $S^{-1} [/mm] = [mm] \begin{pmatrix} -1/3 & 1/3 & 1/3 \\ 0 & 1/2 & -1/2 \\ 1/3 & 1/6 & 1/6 \end{pmatrix}$. [/mm]

Aber [mm] $SAS^{-1}$ [/mm] ergibt wieder nicht das Gewünschte. Woran liegts diesmal?

Bezug
                        
Bezug
Diagonalisierung einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 17:14 Mo 07.04.2014
Autor: angela.h.b.


> Hallo,
>  
> es müsste doch auch so funktionieren wie hier
> http://page.mi.fu-berlin.de/klarner/lina2_blatt5_loesungen.pdf
>  
> d.h. ich invertiere meine Matrix, bestehend aus den
> Eigenvektoren.
>  Ich erhalte dann aber
>  
> [mm]S = \begin{pmatrix} -1&0&2 \\1&1&1\\1&-1&1\end{pmatrix}[/mm]
> sowie
>  [mm]S^{-1} = \begin{pmatrix} -1/3 & 1/3 & 1/3 \\ 0 & 1/2 & -1/2 \\ 1/3 & 1/6 & 1/6 \end{pmatrix}[/mm].
>  
> Aber [mm]SAS^{-1}[/mm] ergibt wieder nicht das Gewünschte. Woran
> liegts diesmal?

Hallo,

A beschreibt eine lineare Abbildung bzgl. der Standardbasis, und die Diagonalmatrix D beschreibt dieselbe Abbildung bzgl einer Basis aus Eigenvektoren.

In [mm] D=TAT^{-1} [/mm] ist S die Matrix, die Vektoren, die bzgl der Standardbasis gegeben sind, in solche bzgl der Eigenbasis umwandelt,

[mm] T^{-1} [/mm] ist die Matrix, die Vektoren bzgl. der Eigenbasis in solche bzgl der Standardbasis umwandelt,
und diese Matrix ist halt die Matrix, die die Eigenvektoren (in Koordinaten bzgl. der Standardbasis, also "ganz normal") in den Spalten enthält.,

also ist [mm] T^{-1}=\begin{pmatrix} -1&0&2 \\1&1&1\\1&-1&1\end{pmatrix}, [/mm]
und T ihre Inverse.

Du mußt also rechnen       [mm] \begin{pmatrix} -1/3 & 1/3 & 1/3 \\ 0 & 1/2 & -1/2 \\ 1/3 & 1/6 & 1/6 \end{pmatrix} [/mm] A [mm] \begin{pmatrix} -1&0&2 \\1&1&1\\1&-1&1\end{pmatrix}. [/mm]

Vielleicht war das zuvor sogar auch schon falsch - hab' ich grad keine Lust nachzugucken...

LG Angela







Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]