matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieDichte
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitstheorie" - Dichte
Dichte < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dichte: Rechnungskorrektur
Status: (Frage) beantwortet Status 
Datum: 16:40 Sa 28.05.2011
Autor: Frisco

Aufgabe
[mm]X_{1}, X_{2}[/mm] std. normalverteilt und unabhängig mit Dichte [mm]f_{x_{i}}(x_{i})=\bruch{1}{\wurzel{2\pi}} exp(-\bruch{x_{i}^2}{2})[/mm]
Berechne gemeinsame Dichte von [mm]Y=\vektor{y_{1} \\ y_{2}}:=\vektor{x_{1}+x_{2} \\ x_{1}-x_{2}}[/mm]




Hallo ich habe die Aufgabe soweit gelöst, bitte korrigiert doch meine Rechnung ob ich alles richtig gemacht habe! :-)
Um diese Aufgabe zu lösen habe ich den Trafo.-Satz verwendet
Dazu sei [mm]X:=(0,\infty)^2 ; Y:=(0,\infty)\textrm{x}(-\infty,\infty) \textrm{offen}[/mm]

[mm]\Phi:X\rightarrow Y; \Phi(x_{1},x_{2})=(x_{1}+x_{2},x_{1}-x_{2})=:(y_{1},y_{2}) \textrm{bijektiv}[/mm]


[mm]\Rightarrow (\Phi^{-1})(y_{1},y_{2})=(\bruch{1}{2}(y_{1}+y_{2}),\bruch{1}{2}(y_{1}-y_{2})) [/mm]

weiter erhalte ich von der det. der Jacobi Matrix

[mm]\Rightarrow| \textrm{det}(\Phi^{-1})'(y_{1},y_{2})|=\bruch{1}{2}[/mm]

Nach dem Trafo.-Satz gilt doch dann für die gemeinsame Dichte von [mm]Y[/mm]

[mm]f_{Y}(y_{1},y_{2})=f_{x_{1},x_{2}}((\Phi^{-1})(y_{1},y_{2}))*| \textrm{det}(\Phi^{-1})'(y_{1},y_{2})|[/mm]

[mm]\Rightarrow f_{Y}(y_{1},y_{2})= \bruch{1}{\wurzel{2\pi}} exp[-\bruch{1}{2}(\bruch{1}{2}(y_{1}+y_{2})+\bruch{1}{2}(y_{1}-y_{2}))^2]*\bruch{1}{2}=...=\bruch{1}{2\wurzel{2\pi}}exp[-\bruch{1}{2}y^2_{1}][/mm]

Ich hoffe das stimmt was ich ausgerechnet habe?!

Danke für eure Hilfe/Korrektur


        
Bezug
Dichte: Antwort
Status: (Antwort) fertig Status 
Datum: 18:22 Sa 28.05.2011
Autor: MathePower

Hallo Frisco,


> [mm]X_{1}, X_{2}[/mm] std. normalverteilt und unabhängig mit Dichte
> [mm]f_{x_{i}}(x_{i})=\bruch{1}{\wurzel{2\pi}} exp(-\bruch{x_{i}^2}{2})[/mm]
>  
> Berechne gemeinsame Dichte von [mm]Y=\vektor{y_{1} \\ y_{2}}:=\vektor{x_{1}+x_{2} \\ x_{1}-x_{2}}[/mm]
>  
>
>
> Hallo ich habe die Aufgabe soweit gelöst, bitte korrigiert
> doch meine Rechnung ob ich alles richtig gemacht habe! :-)
>  Um diese Aufgabe zu lösen habe ich den Trafo.-Satz
> verwendet
>  Dazu sei [mm]X:=(0,\infty)^2 ; Y:=(0,\infty)\textrm{x}(-\infty,\infty) \textrm{offen}[/mm]
>  
> [mm]\Phi:X\rightarrow Y; \Phi(x_{1},x_{2})=(x_{1}+x_{2},x_{1}-x_{2})=:(y_{1},y_{2}) \textrm{bijektiv}[/mm]
>  
>
> [mm]\Rightarrow (\Phi^{-1})(y_{1},y_{2})=(\bruch{1}{2}(y_{1}+y_{2}),\bruch{1}{2}(y_{1}-y_{2})) [/mm]
>  
> weiter erhalte ich von der det. der Jacobi Matrix
>  
> [mm]\Rightarrow| \textrm{det}(\Phi^{-1})'(y_{1},y_{2})|=\bruch{1}{2}[/mm]


[ok]


>  
> Nach dem Trafo.-Satz gilt doch dann für die gemeinsame
> Dichte von [mm]Y[/mm]
>  
> [mm]f_{Y}(y_{1},y_{2})=f_{x_{1},x_{2}}((\Phi^{-1})(y_{1},y_{2}))*| \textrm{det}(\Phi^{-1})'(y_{1},y_{2})|[/mm]
>  
> [mm]\Rightarrow f_{Y}(y_{1},y_{2})= \bruch{1}{\wurzel{2\pi}} exp[-\bruch{1}{2}(\bruch{1}{2}(y_{1}+y_{2})+\bruch{1}{2}(y_{1}-y_{2}))^2]*\bruch{1}{2}=...=\bruch{1}{2\wurzel{2\pi}}exp[-\bruch{1}{2}y^2_{1}][/mm]


Hier muß es doch lauten:

[mm]f_{Y}(y_{1},y_{2})= \bruch{1}{\wurzel{{\left(2\pi\right)^{\red{2}}}}} exp[-\bruch{1}{2} ( \ \left\blue{(} \ \bruch{1}{2}(y_{1}+y_{2}) \ \right\blue{)}^{2}+\left\blue{(} \ \bruch{1}{2}(y_{1}-y_{2}) \ \right\blue{)}^2 \ )]*\bruch{1}{2}[/mm]


>  
> Ich hoffe das stimmt was ich ausgerechnet habe?!


>  
> Danke für eure Hilfe/Korrektur
>


Gruss
MathePower  

Bezug
                
Bezug
Dichte: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:27 Sa 28.05.2011
Autor: Frisco

Ohhhh da habe ich wohl was übersehen ;-)
Öhm aber woher kommt das Quadrat unter der Wurzel als das [mm]\bruch{1}{\wurzel{(2\pi})^\red{2}}[/mm]?!


Bezug
                
Bezug
Dichte: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:29 Sa 28.05.2011
Autor: Frisco


Ohhhh da habe ich wohl was übersehen ;-)
Öhm aber woher kommt das Quadrat unter der Wurzel als das [mm] \bruch{1}{\wurzel{(2\pi})^\red{2}} [/mm]?!


Bezug
                        
Bezug
Dichte: Antwort
Status: (Antwort) fertig Status 
Datum: 18:46 Sa 28.05.2011
Autor: MathePower

Hallo Frisco,

>
> Ohhhh da habe ich wohl was übersehen ;-)
>  Öhm aber woher kommt das Quadrat unter der Wurzel als das
> [mm]\bruch{1}{\wurzel{(2\pi})^\red{2}} [/mm]?!
>  


Siehe hier: []p-dimensionale Standardnormalverteilung


Gruss
MathePower

Bezug
                                
Bezug
Dichte: Korrekur
Status: (Frage) überfällig Status 
Datum: 19:18 Sa 28.05.2011
Autor: Frisco


Oh stimmt ich habe den Fehler gesehen...
Nun ich weiß nicht, aber in meiner Rechnung ist noch ein Fehler,
wenn ich so weiter rechne wie du dann komme ich auf folgendes:
[mm]\bruch{1}{2\pi}exp[-\bruch{1}{2}(\bruch{1}{4}((y_{1}+y_{2})^2+(y_{1}-y_{2})^2))] \textrm{ mit Binomischer Formel folgt}[/mm]
[mm]=\bruch{1}{2\pi}exp[-\bruch{1}{2}(\bruch{1}{4}(2y^2_{1}+2y^2_{2}))]=\bruch{1}{2\pi}exp[-\bruch{1}{4}(y^2_{1}+y^2_{2})][/mm]
aber es darf nicht[mm]-\bruch{1}{4} \textrm{ sondern es muss doch } -\bruch{1}{2}\textrm{ heißen?!}[/mm]
also [mm]\bruch{1}{2\pi}exp[-\bruch{1}{2}(y^2_{1}+y^2_{2})][/mm] dieses ist nach meinem Buch richtig...
Siehtst du meinen Fehler?!


Bezug
                                        
Bezug
Dichte: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Mo 30.05.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]