matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieDichte Zufallsvektor
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitstheorie" - Dichte Zufallsvektor
Dichte Zufallsvektor < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dichte Zufallsvektor: Gemeinsame Dichte von ZVA best
Status: (Frage) beantwortet Status 
Datum: 22:19 Di 12.06.2012
Autor: Dicen

Aufgabe
In dieser Aufgabe führen wir zuerst das folgende Experiment durch:
Wir nehmen ein Blatt Papier und zeichnen parallele Linien exakt im Abstand von 2 cm ein.
Dann nehmen wir eine (möglichst dünne) Bleistiftmine und brechen ein Stück mit genau der Länge 1, 5 cm ab.
Nun wird die kleine Mine aus einer H öhe von mindestens 30 cm mit der Spitze nach unten auf das Linienmuster fallengelassen, so dass sie vollst öndig auf dem Blatt mit dem Linienmuster
liegen bleibt. Andernfalls gilt der Versuch als ung ültig und wird wiederholt. Wir vermerken:
Eine 1, wenn die Mine liegen bleibt, so dass sie eine Linie des Papiers schneidet.
Eine 0 wenn die Mine liegen bleibt, so dass sie keine Linie des Papiers schneidet.
(i) Fhren Sie diesen Versuch 50 Mal durch und stellen Sie ihr Ergebnis in einem Stabdia
gramm dar.
Nun modellieren wir dies durch ein Zufallsexperiment: Die Zufallsvariable M beschreibe den minimalen Abstand des Mittelpunkts der Mine zur n ̈chstgelegenen Linie des Musters. M ist somit gleichverteilt auf dem Intervall [0, 1]. Uberdies unterliegt der kleinere Winkel φ zwischen der Mine und der Parallele des Linienmusters durch den Mittelpunkt der Mine einer Gleichverteilung auf dem Intervall [0, π/2]. Diese beiden Zufallsvariablen Mittelpunkt und Winkel werden als unabhängig modelliert.
(ii) Bestimmen Sie die gemeinsame Dichte der Zufallsvariable (M, φ).


Liebe Helfer,

das erste ist kein Problem, aber irgendwie verzweifle ich an der gemeinsamen Dichte. Ich habe leider nicht mal einen Ansatz.
Ich weiß wie die Gleichverteilung aussieht, aber M und φ haben ja nicht so selbe Dichte, daher keine Ahnung. :(
Ich hoffe, ihr könnt mir einen Tipp geben.

Grüße
Dicen


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Dichte Zufallsvektor: Antwort
Status: (Antwort) fertig Status 
Datum: 22:39 Di 12.06.2012
Autor: Gonozal_IX

Hiho,

>  (ii) Bestimmen Sie die gemeinsame Dichte der Zufallsvariable (M, φ).

> Diese beiden Zufallsvariablen Mittelpunkt und Winkel werden als unabhängig modelliert.

Die gemeinsame Dichte unabhängiger Zufallsvariablen ist..... nacharbeiten, wenn du das nicht weißt! Da musst du nichtmal was rechnen.
Was ist die Verteilungsdichte von M?
Was ist die Verteilungsdichte von [mm] $\varphi$ [/mm] ?
Was ist dann die gemeinsame Verteilungsdichte von M und [mm] \varphi [/mm] ?

MFG,
Gono

Bezug
                
Bezug
Dichte Zufallsvektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:33 Di 12.06.2012
Autor: Dicen

Achja, ich habs gerade gefunden.
[mm] $f_XY(x,y)=f_X(x)*f_Y(y)$, [/mm] dann ist das ja klar.

Also [mm] $f_XY(x,y)=\frac{2}{pi}$. [/mm]
Müsste so sein, wa?

Sorry für die Frage, war ne Woche lang krank und hab daher kein Skript.

Bezug
                        
Bezug
Dichte Zufallsvektor: Antwort
Status: (Antwort) fertig Status 
Datum: 23:54 Di 12.06.2012
Autor: Teufel

Hi!

Fast. Es fehlen noch ein paar Indikatorfunktionen, die ihr vielleicht mit $1$ oder $I$ bezeichnet habt. Es gilt [mm] 1_X(x)=1 [/mm] falls $x [mm] \in [/mm] X$ und 0 sonst. Es gilt z.B. [mm] f_\varphi(y)=\frac{2}{\pi}1_{[0, \frac{\pi}{2}]}(y), [/mm] weil die Wahrscheinlichkeit, dass $y$ z.B. zwischen 10 und 20 liegen kann 0 sein muss. Du kriegst also nur Wahrscheinlichkeitsmasse, wenn sich $y$ auch in dem gültigen Bereich von 0 bis [mm] \frac{\pi}{2} [/mm] bewegt.

Bei $M$ musst du auch eine Einschränkung treffen.

Bezug
                                
Bezug
Dichte Zufallsvektor: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:00 Mi 13.06.2012
Autor: Dicen

Ja, danke!

Ich schreibe das zwar immer mit solchen geschweiften Klammern, aber ich hätte es wohl vergessen.
Eine Woche krank reißt schon große Lücken merke ich.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]