matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikDichte von zwei Exp.Vert ZV
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Dichte von zwei Exp.Vert ZV
Dichte von zwei Exp.Vert ZV < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dichte von zwei Exp.Vert ZV: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:03 Di 27.02.2007
Autor: setine

Aufgabe
Aufgabe 3
X und Y sind unabhängige exponentialverteilte Zufallsvariablen mit Parametrn [mm] $\lambda_X=2$ [/mm] und [mm] $\lambda_Y=3$. [/mm] Sei nun [mm] $M:=\max{X,Y}$ [/mm] das Maximum von X und Y.

a) Welche Werte kann M annehmen und was ist die Dichte von M?

[mm] $f_M(t) [/mm] = P(M=t) = P(max(X,Y) = t) = $
[mm] $P(\{X=t\} \cup \{Y=t\}) [/mm] = $
$P(X=t)+P(Y=t) - [mm] P(\{X=t\} \cap \{Y=t\}) [/mm] = $
$P(X=t)+P(Y=t) - [mm] P(X=t)\cdot [/mm] P(Y=t) = $
[mm] $f_X(t)+$f_Y(t)-f_X(t) \cdot f_Y(t)$ [/mm]

$ [mm] \Rightarrow f_M(t) [/mm] = [mm] 2e^{-2t}+3e^{-3t}-6e^{-5t}$ [/mm]

wäre mein Resultat, was aber falsch ist gemäss Musterlösung ;)

Richtig ist dort:
[mm] $f_M(t) [/mm] = [mm] 2e^{-2t}+3e^{-3t}-5e^{-5t}$ [/mm]
(6 sollte 5 sein)


In der []Musterlösung (pdf)wird ein ganz anderer Weg eingeschlagen um die Aufgabe zu lösen. Es handelt sich hierbei um die Aufgabe 3a).


Hab ich etwas vergessen? Oder ist mein Lösungsweg sogar ganz falsch?

Vielen Dank im Voraus,
Setine



        
Bezug
Dichte von zwei Exp.Vert ZV: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:26 Di 27.02.2007
Autor: setine

Ich vermute den Fehler in der 2. Zeile:
$P(max(X,Y) = t) = [mm] P(\{X=t\} \cup \{Y=t\})$ [/mm]

Denn $max(X,Y)=t [mm] \Rightarrow [/mm] X=t [mm] \vee [/mm] Y=t$ aber nicht $X=t [mm] \vee [/mm] Y=t [mm] \Rightarrow [/mm] max(X,Y)=t$

Kann mans noch irgendwie retten ?

Bezug
        
Bezug
Dichte von zwei Exp.Vert ZV: Antwort
Status: (Antwort) fertig Status 
Datum: 22:30 Di 27.02.2007
Autor: luis52

Grüezi setine,

das Ganze wird meines Erachtens einfacher, wenn du zunaechst die
Verteilungsfunktion [mm] $G(t)=P(M\le [/mm] t)$ von $M$ bestimmst und die Dichte
anschliessend durch $g(t)=G'(t)$ herleitest.

Ansatz: [mm] $G(t)=P(M\le t)=P((X\le t)\cap (Y\le t))=P(X\le t)P(Y\le [/mm] t)$.
Beachte die Verwendung von [mm] "$\cap$" [/mm] und nicht [mm] "$\cup$". [/mm]

hth        

Bezug
                
Bezug
Dichte von zwei Exp.Vert ZV: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:30 Di 27.02.2007
Autor: setine

Ah! Bei dieser etwas anderen schreibweise als in der Musterlösung ist mir das Licht aufgegangen ;) Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]