matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikDichtefunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Dichtefunktion
Dichtefunktion < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dichtefunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:08 Di 12.12.2017
Autor: Mandy_90

Aufgabe
Gegeben seien die Funktionen [mm] f_{1}(x)=\bruch{c_{1}}{4+(x-3)^{2}}, [/mm] x [mm] \in \IR, [/mm]
[mm] f_{2}(x)=\begin{cases} 3+c_{2}*x, & \mbox{für } 0 \le x \le 4 \mbox{ } \\ 0, & \mbox{sonst } \mbox{ ungerade} \end{cases} [/mm]

a. Für welche Werte von [mm] c_{1} [/mm] und [mm] c_{2} [/mm] sind [mm] f_{1} [/mm] und [mm] f_{2} [/mm] Dichtefunktionen von Zufallsvariablen ?
b. Sei [mm] f_{1} [/mm] die Dichtefunktion einer Zufallsvariablen A (mit entsprechendem Wert [mm] c_{1}). [/mm] Bestimmen Sie dann P( 1 [mm] \le [/mm] A [mm] \le [/mm] 5) und für [mm] Y_{1}=3-\bruch{1}{5}*A_{1}^{3} [/mm] die Wahrscheinlichkeit [mm] P(Y_{1} \ge [/mm] 28).

Hallo,

FÜr die Dichtefunktion muss das Integral von [mm] f_{2} [/mm] in den angegebenen Grenzen 1 ergeben. Für [mm] f_{2} [/mm] habe ich das gemacht und es kommt [mm] c_{2}=-\bruch{11}{8} [/mm] raus, aber wenn ich das einsetze ist f nicht immer größer als 0.
Bei [mm] f_{1} [/mm] weiß ich nicht wie ich intergrieren soll.

lg
[mm] Mandy_{90} [/mm]

        
Bezug
Dichtefunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:18 Di 12.12.2017
Autor: Diophant

Hallo,

> Gegeben seien die Funktionen
> [mm]f_{1}(x)=\bruch{c_{1}}{4+(x-3)^{2}},[/mm] x [mm]\in \IR,[/mm]
> [mm]f_{2}(x)=\begin{cases} 3+c_{2}*x, & \mbox{für } 0 \le x \le 4 \mbox{ } \\ 0, & \mbox{sonst } \mbox{ ungerade} \end{cases}[/mm]

>

> a. Für welche Werte von [mm]c_{1}[/mm] und [mm]c_{2}[/mm] sind [mm]f_{1}[/mm] und
> [mm]f_{2}[/mm] Dichtefunktionen von Zufallsvariablen ?
> b. Sei [mm]f_{1}[/mm] die Dichtefunktion einer Zufallsvariablen A
> (mit entsprechendem Wert [mm]c_{1}).[/mm] Bestimmen Sie dann P( 1
> [mm]\le[/mm] A [mm]\le[/mm] 5) und für [mm]Y_{1}=3-\bruch{1}{5}*A_{1}^{3}[/mm] die
> Wahrscheinlichkeit [mm]P(Y_{1} \ge[/mm] 28).
> Hallo,

>

> FÜr die Dichtefunktion muss das Integral von [mm]f_{2}[/mm] in den
> angegebenen Grenzen 1 ergeben. Für [mm]f_{2}[/mm] habe ich das
> gemacht und es kommt [mm]c_{2}=-\bruch{11}{8}[/mm] raus, aber wenn
> ich das einsetze ist f nicht immer größer als 0.

Ja, dein [mm] c_2 [/mm] bekomme ich auch. Somit ist die Aufgabe fehlerhaft (oder fehlerhaft abgetippt?).

> Bei [mm]f_{1}[/mm] weiß ich nicht wie ich intergrieren soll.

Es ist

[mm] \int{\frac{1}{a^2+x^2} dx}= \frac{1}{a}*arctan\left( \frac{x}{a}\right)+C[/mm]

Dieses Integral benötigst du hier.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 7h 29m 3. xXMathe_NoobXx
USons/Binomialentwicklung
Status vor 12h 12m 1. Hela123
UStoc/Beweis Varianz von Summe
Status vor 13h 21m 3. mathnoob9
UWTheo/Konstruktion von ZV
Status vor 22h 25m 7. fred97
UAnaRn/Satz Implizite Funktion System
Status vor 1d 15h 17m 3. Dom_89
SDiffRech/Ableitung bilden
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]