matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikDichtetransformation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Dichtetransformation
Dichtetransformation < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dichtetransformation: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:07 Di 06.03.2012
Autor: Krypto

Aufgabe
Seien Y und Y unabhängig und [mm] Exp(\beta)-verteilt. [/mm] Zu zeigen sei nun, dass [mm] P(\bruch{X}{X+Y} \in [/mm] [a,b]) = b - a für 0 [mm] \le [/mm] a < b [mm] \le [/mm] 1 gilt.

Hallo,

als Hinweis war noch gegeben, dass man mittels Dichtetransformation die gemeinsame Verteilung von X+Y und [mm] \bruch{X}{X+Y} [/mm] bestimmen soll.

Also, das habe ich mal versucht:

g: (u,v) [mm] \mapsto [/mm] (u+v, [mm] \bruch{u}{u+v}) [/mm]
[mm] g^{-1}: [/mm] (x,y) [mm] \mapsto [/mm] (xy,x(1-y))

J(x,y) = [mm] \pmat{ y & x \\ 1-y & -x } [/mm]

det(J(x,y)) = [mm] \vmat{ y & x \\ 1-y & -x } [/mm] = -x

[mm] f(g^{-1}(x,y))*|det(J(x,y)| [/mm] = f(xy,x(1-y))*x = [mm] x*\beta^2*e^{-\beta*(xy-x(1-y))} [/mm] = [mm] x*\beta^2*e^{-\beta x} [/mm] = [mm] f_{u+v,\bruch{u}{u+v}}(x,y) [/mm]

Stimmt das so oder bin ich total auf dem Holzweg? Wie würde es denn dann weitergehen?

Grüße

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Dichtetransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 Di 06.03.2012
Autor: luis52

Moin Krypto,

[willkommenmr]


> Stimmt das so oder bin ich total auf dem Holzweg?

Sieht gut aus.

> Wie   würde es denn dann weitergehen?

Wende den Transformationssatz fuer Dichten an.

vg Luis



Bezug
                
Bezug
Dichtetransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:17 Mi 07.03.2012
Autor: Krypto

Das verstehe ich leider nicht, ich dachte, so etwas in der Art hätte ich schon getan...

Bezug
                        
Bezug
Dichtetransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 15:49 Mi 07.03.2012
Autor: luis52


> ich dachte, so etwas in der  Art hätte ich schon getan...

"In der Art" schon. Was aber ist beispielsweise $ [mm] f_{u+v,\bruch{u}{u+v}}(-4711,-4711) [/mm] $?

vg Luis


Bezug
                                
Bezug
Dichtetransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:58 Mi 07.03.2012
Autor: Krypto

Hallo,

also, ich habe da noch mal drüber nachgedacht. Ich verstehe die erste Antwort zwar immer noch nicht, aber ich komme zu folgendem:

Meine errechnete Dichte hängt ja nicht von y ab, also wäre die Dichte von [mm] \bruch{X}{X+Y} [/mm] dann einfach 1?

Dann bekäme ich

[mm] P(\bruch{X}{X+Y} \in [/mm] [a,b]) = [mm] \integral_{a}^{b}{1 dx} [/mm] = b - a

Ist es das dann schon?

Viele Grüße


Bezug
                                        
Bezug
Dichtetransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 15:09 Do 08.03.2012
Autor: luis52

Und ich verstehe deine Antwort nicht. Was ist denn nun $ [mm] f_{u+v,\bruch{u}{u+v}}(-4711,-4711) [/mm] $?

Du solltest das Ganze mal sauber aufschreiben: Gegeben ist die gemeinsame Dichte von $(X,Y)_$, naemlich

[mm] $f_{x,y}(x,y)=\beta^2\exp[-\beta(x+y)]\red{\chi_{(0,\infty)}(x)\chi_{(0,\infty)}(y)}$. [/mm]

Darin bezeichnet [mm] $\chi_M$ [/mm] die Indikatorfunktion der Menge $M_$, also [mm] $\chi_M(x)=1$ [/mm] fuer [mm] $x\in [/mm] M$ und  [mm] $\chi_M(x)=0$ [/mm] fuer [mm] $x\not\in [/mm] M$.

Wende jetzt den Transformationssatz unter Beruecksichtigung der Indikatorfunktionen an.

Die Schreibweise mit der Indikatorfunktion ermoeglicht  in der Regel, dass man spaeter genau sagen kann, wo  $ [mm] f_{u+v,\bruch{u}{u+v}}(r,s)>0$ [/mm] gilt, was also der Traeger des transformierten Vektors ist. Wenn du also korrekt arbeitest, wirst du $ [mm] f_{u+v,\bruch{u}{u+v}}(-4711,-4711) [/mm] =0$ bestaetigen.

vg Luis




Bezug
                                                
Bezug
Dichtetransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:27 Do 08.03.2012
Autor: Krypto

Hallo,

dann habe ich mir das wohl zu einfach gemacht. Ich dachte, wenn U+V und [mm] \bruch{U}{U+V} [/mm] unabhängig sind, dann würde gelten
[mm] f_{U+V,\bruch{U}{U+V}}(x,y) [/mm]  = [mm] f_{U+V}(x)*f_{\bruch{U}{U+V}}(y) [/mm]
und so bin ich zu meinem Ergebnis gekommen. Stimmt das also nicht? Warum denn nicht?

Viele Grüße



Bezug
                                                        
Bezug
Dichtetransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 15:59 Do 08.03.2012
Autor: luis52

Moin,

Warum sollten $U+V_$ und $ [mm] \bruch{U}{U+V} [/mm] $ unabhaengig sein? In beiden Zufallsvariablen stecken dieselben "Zutaten".

vg Luis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]