matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNichtlineare GleichungenDicksons Lemma
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Nichtlineare Gleichungen" - Dicksons Lemma
Dicksons Lemma < Nichtlineare Gleich. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dicksons Lemma: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:06 Di 26.11.2019
Autor: Kruemelmonster2

Aufgabe
Dickson´s Lemma: Sei [mm] $I=(x^{\alpha} \in [/mm] A) [mm] \subseteq k[x_1,...,x_n]$ [/mm] ein monomiales Ideal. Dann kann I in der Form [mm] $I=(x^{\alpha(1)},...,x^{\alpha(s)})$ [/mm] geschrieben werden, mit [mm] $\alpha [/mm] (1), ..., [mm] \alpha(s)\in [/mm] A$.

Insbesondere hat I eine endliche Basis.

Ich habe keine konkrete Aufgabenstellung sondern vielmehr eine Nachfrage. Ich beschäftige mich aktuell mit dem lösen von nicht linearen Gleichungssystemen. Dafür führt man den Begriff des Ideals ein. Das Dickson Lemma besagt ja, dass wir für ein monomiales Ideal stets eine endliche Basis finden.

Gibt es ein einfaches Bsp. eines Systems mit potenziell unendlich vielen Gleichungen, die sich dann aber mithilfe des Lemmas letztendlich doch auf ein endliches System zurückführen lässt?

Mir ist leider keins eingefallen.

Mfg. Krümelmonster

        
Bezug
Dicksons Lemma: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Do 28.11.2019
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]