matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenCafé VHDie Arbeits-Formel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Café VH" - Die Arbeits-Formel
Die Arbeits-Formel < Café VH < Internes < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Café VH"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Die Arbeits-Formel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Mi 10.01.2018
Autor: rabilein1

"Im Geiste zähl ich die Millionen, denn Arbeit muss sich schließlich lohnen"

Egal, um welche Art von Arbeit es sich dabei handelt, ob geistig oder körperlich, ob bezahlt oder unbezahlt (wie hier im Matheraum). Aber wie kann man feststellen, ob die Arbeit sich "lohnt". Gibt es dafür eine Formel? Und wenn JA: Wie sieht eine solche Formel aus? Welche Komponenten muss sie beinhalten? Und wie spielen diese Komponenten zusammen, um die "Rendite" (also inwieweit sich die Tätigkeit lohnt) auszurechnen?

Mit genau dieser Frage hatte ich mich vor mehr als 20 Jahren schon beschäftigt - damals noch als Angestellter, der dann irgendwann den Job schmiss (kündigte), als diese "Rendite" (R) unter die rote Linie absackte.

Berücksichtigt wurden folgende Komponenten:
V: das Vermögen (damals noch in DM)
G: das monatliche Nettogehalt (in DM)
Z: die wöchentliche Arbeitszeit (in Stunden)
A: die Anstrengung (von 0=sehr leicht=Unterforderung  bis  9=extrem schwer=Überforderung)
Eventuell könnten noch weitere Punkte (z.B. S: Spaßfaktor) Berücksichtigug finden

Die von mir entwickelte Formel für die "Rendite der Arbeit" lautete im Groben:

R = (0.4*G/Z) + (750*G/V) + [40 -(2+A)*Z/12]

Verfeinert wurde die Formel noch dadurch, dass
a) der erste Summand mit 100.000/V multipliziert wird, falls V>100.000
b) der erste Summand nicht größer als 40 sein darf, ansonsten wird er 40
(Grund: ein extrem hoher Stundenlohn soll nicht automatisch bewirken, dass sich jede Art von Arbeit immens lohnt)

c) falls der zweite Summand größer als 20 ist, so wird er 20
(Grund: Falls jemand über kein Vermögen verfügt, soll das nicht bewirken, dass sich dann jede Art von bezahlter Arbeit immer immens lohnen würde)

Der (theoretische) Maximalwert wäre R=100 (viel Kohle für wenig Maloche).
Wo die rote Linie ist und ab wann "Skavenarbeit" beginnt, muss jeder für sich selber rausfinden.

Vieles an der Formel wurde willkürlich gesetzt; man könnte die Komponenten Vermögen, Gehalt, Arbeitszeit, Anstrengung/Spaß auch anderweitig gewichten.




        
Bezug
Die Arbeits-Formel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:59 Fr 12.01.2018
Autor: fred97


> "Im Geiste zähl ich die Millionen, denn Arbeit muss sich
> schließlich lohnen"
>  
> Egal, um welche Art von Arbeit es sich dabei handelt, ob
> geistig oder körperlich, ob bezahlt oder unbezahlt (wie
> hier im Matheraum). Aber wie kann man feststellen, ob die
> Arbeit sich "lohnt". Gibt es dafür eine Formel? Und wenn
> JA: Wie sieht eine solche Formel aus? Welche Komponenten
> muss sie beinhalten? Und wie spielen diese Komponenten
> zusammen, um die "Rendite" (also inwieweit sich die
> Tätigkeit lohnt) auszurechnen?
>  
> Mit genau dieser Frage hatte ich mich vor mehr als 20
> Jahren schon beschäftigt - damals noch als Angestellter,
> der dann irgendwann den Job schmiss (kündigte), als diese
> "Rendite" (R) unter die rote Linie absackte.
>  
> Berücksichtigt wurden folgende Komponenten:
>  V: das Vermögen (damals noch in DM)
>  G: das monatliche Nettogehalt (in DM)
>  Z: die wöchentliche Arbeitszeit (in Stunden)
>  A: die Anstrengung (von 0=sehr leicht=Unterforderung  bis  
> 9=extrem schwer=Überforderung)
>  Eventuell könnten noch weitere Punkte (z.B. S:
> Spaßfaktor) Berücksichtigug finden
>  
> Die von mir entwickelte Formel für die "Rendite der
> Arbeit" lautete im Groben:
>  
> R = (0.4*G/Z) + (750*G/V) + [40 -(2+A)*Z/12]
>  
> Verfeinert wurde die Formel noch dadurch, dass
>  a) der erste Summand mit 100.000/V multipliziert wird,
> falls V>100.000
>  b) der erste Summand nicht größer als 40 sein darf,
> ansonsten wird er 40
>  (Grund: ein extrem hoher Stundenlohn soll nicht
> automatisch bewirken, dass sich jede Art von Arbeit immens
> lohnt)
>  
> c) falls der zweite Summand größer als 20 ist, so wird er
> 20
>  (Grund: Falls jemand über kein Vermögen verfügt, soll
> das nicht bewirken, dass sich dann jede Art von bezahlter
> Arbeit immer immens lohnen würde)
>  
> Der (theoretische) Maximalwert wäre R=100 (viel Kohle für
> wenig Maloche).
>  Wo die rote Linie ist und ab wann "Skavenarbeit" beginnt,
> muss jeder für sich selber rausfinden.
>  
> Vieles an der Formel wurde willkürlich gesetzt; man
> könnte die Komponenten Vermögen, Gehalt, Arbeitszeit,
> Anstrengung/Spaß auch anderweitig gewichten.
>
>
>  

Hallo Rabilein,

mit Deiner Formel bekomme ich für mich $R=80$. Was sagt mir das nun ?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Café VH"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]