matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenDie Binomialreihe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Die Binomialreihe
Die Binomialreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Die Binomialreihe: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:34 Mo 03.02.2014
Autor: gogogo125

Wir betrachten für s [mm] \in \IR [/mm] die Potenzreihe

f(x)= [mm] \summe_{n=0}^{\infty}\vektor{s \\ n}x^{n} [/mm]

mit den verallgemeinerten Binomialkoezienten [mm] \vektor{s \\ n}. [/mm] Zeigen Sie:

(a) Für s [mm] \not\in \IN0 [/mm] gilt: Der Konvergenzradius der Reihe ist R = 1

also ich nehme dir Formel [mm] R=\limes_{x\rightarrow\infty} |\bruch{a_{n+1}}{a_{n}}| [/mm] = [mm] \limes_{x\rightarrow\infty} |\bruch{a_{n+1}}{a_{n}}| [/mm]


[mm] R=\limes_{x\rightarrow\infty} |\bruch{s*(s-1)*...*(s-n+2)*(n+1)!}{s*(s-1)*...*(s-n+1)*n!}| [/mm] = [mm] \limes_{x\rightarrow\infty} [/mm] |(s-n+2)(n+1)|

da kommt ja auf jeden fall nicht 1 raus :-( was mache ich falsch?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Die Binomialreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:07 Mo 03.02.2014
Autor: DieAcht

Hallo,


> Wir betrachten für s [mm]\in \IR[/mm] die Potenzreihe
>  
> f(x)= [mm]\summe_{n=0}^{\infty}\vektor{s \\ n}x^{n}[/mm]
>  
> mit den verallgemeinerten Binomialkoezienten [mm]\vektor{s \\ n}.[/mm]
> Zeigen Sie:
>  
> (a) Für s [mm]\not\in \IN0[/mm] gilt: Der Konvergenzradius der
> Reihe ist R = 1
>  
> also ich nehme dir Formel [mm]R=\limes_{x\rightarrow\infty} |\bruch{a_{n+1}}{a_{n}}|[/mm]
> = [mm]\limes_{x\rightarrow\infty} |\bruch{a_{n+1}}{a_{n}}|[/mm]

Das ist falsch, denn es gilt für den Konvergenzradius $R$:

      [mm] R:=\lim_{n\to\infty}|\frac{a_n}{a_{n+1}}| [/mm]

> [mm]R=\limes_{x\rightarrow\infty} |\bruch{s*(s-1)*...*(s-n+2)*(n+1)!}{s*(s-1)*...*(s-n+1)*n!}|[/mm]
> = [mm]\limes_{x\rightarrow\infty}[/mm] |(s-n+2)(n+1)|

Du hast die Klammern vergessen beim letzten Produkt!


DieAcht

Bezug
                
Bezug
Die Binomialreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:22 Mo 03.02.2014
Autor: gogogo125

ok, ich hab die formel jetzt so umgestellt...leider komme ich da nicht auf ein brauchbares ergebnis :-( wo liegt denn der fehler?

[mm] a_{n} [/mm] = [mm] \bruch{s*(s-1)*...*(s-n+1)}{n!} [/mm]
[mm] a_{n+1} [/mm] = [mm] \bruch{s*(s-1)*...*(s-n+2)}{(n+1)!} [/mm]

[mm] \lim_{n\to\infty}|\frac{a_n}{a_{n+1}}|=\lim_{n\to\infty}|\bruch{\bruch{s*(s-1)*...*(s-n+1)}{n!}}{\bruch{s*(s-1)*...*(s-n+2)}{(n+1)!}}|=\lim_{n\to\infty}|\bruch{s*(s-1)*...*(s-n+1)*n!*(n+1)}{s*(s-1)*...*(s-n+2)*n!}|=\lim_{n\to\infty}|\bruch{(n+1)}{(s-n+2)}| [/mm]

Bezug
                        
Bezug
Die Binomialreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:24 Mo 03.02.2014
Autor: fred97


> ok, ich hab die formel jetzt so umgestellt...leider komme
> ich da nicht auf ein brauchbares ergebnis :-( wo liegt denn
> der fehler?
>  
> [mm]a_{n}[/mm] = [mm]\bruch{s*(s-1)*...*(s-n+1)}{n!}[/mm]
>  [mm]a_{n+1}[/mm] = [mm]\bruch{s*(s-1)*...*(s-n+2)}{(n+1)!}[/mm]
>  
> [mm]\lim_{n\to\infty}|\frac{a_n}{a_{n+1}}|=\lim_{n\to\infty}|\bruch{\bruch{s*(s-1)*...*(s-n+1)}{n!}}{\bruch{s*(s-1)*...*(s-n+2)}{(n+1)!}}|=\lim_{n\to\infty}|\bruch{s*(s-1)*...*(s-n+1)*n!*(n+1)}{s*(s-1)*...*(s-n+2)*n!}|=\lim_{n\to\infty}|\bruch{(n+1)}{(s-n+2)}|[/mm]

Wo ist das Problem ?

Es ist [mm] \lim_{n\to\infty}|\bruch{(n+1)}{(s-n+2)}|=1 [/mm]

FRED

>  


Bezug
                                
Bezug
Die Binomialreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:33 Mo 03.02.2014
Autor: gogogo125

wie kommst du denn da sofort auf 1???

also oberhalb geht doch [mm] (n+1)\to\infty [/mm] für [mm] n\to\infty [/mm]

und was s-n+2 ergibt ist doch auch überhaupt nicht klar ???

bzw. ich bräuchte da wohl noch einen zwischenschritt um das nachvollziehen zu können...

Bezug
                                        
Bezug
Die Binomialreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:38 Mo 03.02.2014
Autor: fred97


> wie kommst du denn da sofort auf 1???
>  
> also oberhalb geht doch [mm](n+1)\to\infty[/mm] für [mm]n\to\infty[/mm]
>  
> und was s-n+2 ergibt ist doch auch überhaupt nicht klar

Im fraglichen Quotienten dividiere Zähler und Nenner durch n.

FRED

> ???
>  
> bzw. ich bräuchte da wohl noch einen zwischenschritt um
> das nachvollziehen zu können...


Bezug
                        
Bezug
Die Binomialreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:36 Mo 03.02.2014
Autor: DieAcht

Hallo,


> ok, ich hab die formel jetzt so umgestellt...leider komme
> ich da nicht auf ein brauchbares ergebnis :-( wo liegt denn
> der fehler?
>  
> [mm]a_{n}[/mm] = [mm]\bruch{s*(s-1)*...*(s-n+1)}{n!}[/mm]
>  [mm]a_{n+1}[/mm] = [mm]\bruch{s*(s-1)*...*(s-n+2)}{(n+1)!}[/mm]
>  
> [mm]\lim_{n\to\infty}|\frac{a_n}{a_{n+1}}|=\lim_{n\to\infty}|\bruch{\bruch{s*(s-1)*...*(s-n+1)}{n!}}{\bruch{s*(s-1)*...*(s-n+2)}{(n+1)!}}|=\lim_{n\to\infty}|\bruch{s*(s-1)*...*(s-n+1)*n!*(n+1)}{s*(s-1)*...*(s-n+2)*n!}|=\lim_{n\to\infty}|\bruch{(n+1)}{(s-n+2)}|[/mm]
>  

Ich muss meinem Vorredner widersprechen.

Natürlich gilt folgendes:

      [mm] \lim_{n\to\infty}|\bruch{(n+1)}{(s-n+2)}|=1 [/mm]

Der Rechenweg ist aber falsch,
denn für das letzte Produkt muss dort stehen:

      [mm] \frac{1}{\frac{s-(n+1)+1}{n+1}}=\frac{1}{\frac{s-n}{n+1}}=\frac{n+1}{s-n} [/mm]

Damit folgt:

      [mm] $|\frac{a_n}{a_{n+1}}|\to 1$,n\to\infty [/mm]

Allgemeiner gilt folgendes:

      [mm] \vektor{s \\ n}:=\produkt_{j=1}^{n}\frac{s-j+1}{j} [/mm]

Wir setzen [mm] f(j):=\frac{s-j+1}{j}, [/mm] damit gilt:

      [mm] |\frac{a_n}{a_{n+1}}|=|\frac{\produkt_{j=1}^{n}f(j)}{\produkt_{j=1}^{n+1}f(j)}|=|\frac{1}{f(n+1)}|=|\frac{1}{\frac{s-(n+1)+1}{n+1}}|=|\frac{n+1}{s-n}|\to 1,n\to\infty [/mm]


Gruß
DieAcht

Bezug
                                
Bezug
Die Binomialreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 Mo 03.02.2014
Autor: gogogo125

klammern vergessen....so ein mist...ich habs jetzt korriegiert das auch meinen herleitung stimmen sollte....

[mm] \lim_{n\to\infty}|\frac{a_n}{a_{n+1}}|=\lim_{n\to\infty}|\bruch{\bruch{s\cdot{}(s-1)\cdot{}...\cdot{}(s-n+1)}{n!}}{\bruch{s\cdot{}(s-1)\cdot{}...\cdot{}(s-n+2)}{(n+1)!}}|=\lim_{n\to\infty}|\bruch{s\cdot{}(s-1)\cdot{}...\cdot{}(s-n+1)\cdot{}n!\cdot{}(n+1)}{s\cdot{}(s-1)\cdot{}...\cdot{}(s-(n+1)+1)\cdot{}n!}|=\lim_{n\to\infty}|\bruch{(n+1)}{(s-n)}|=1 [/mm]

s [mm] \not\in \IN0 [/mm] wird gefordert da sonst [mm] \vektor{s \\ n} [/mm] = 0 also division durch 0 richtig?

Bezug
                                        
Bezug
Die Binomialreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:08 Mo 03.02.2014
Autor: DieAcht

Hallo,


> klammern vergessen....so ein mist...ich habs jetzt
> korriegiert das auch meinen herleitung stimmen sollte....
> [mm]\lim_{n\to\infty}|\frac{a_n}{a_{n+1}}|=\lim_{n\to\infty}|\bruch{\bruch{s\cdot{}(s-1)\cdot{}...\cdot{}(s-n+1)}{n!}}{\bruch{s\cdot{}(s-1)\cdot{}...\cdot{}(s-n+2)}{(n+1)!}}|=\lim_{n\to\infty}|\bruch{s\cdot{}(s-1)\cdot{}...\cdot{}(s-n+1)\cdot{}n!\cdot{}(n+1)}{s\cdot{}(s-1)\cdot{}...\cdot{}(s-(n+1)+1)\cdot{}n!}|=\lim_{n\to\infty}|\bruch{(n+1)}{(s-n)}|=1[/mm]

Der zweite Term ist noch immer falsch, aber ich denke,
dass du das dem copy&paste zu verschulden ist.

> s [mm]\not\in \IN0[/mm] wird gefordert da sonst [mm]\vektor{s \\ n}[/mm] = 0
> also division durch 0 richtig?

Wo wird denn durch $0$ dividiert?

Der Binomialkoeffizient ist definiert für [mm] n\in\IC [/mm] und [mm] k\in\IZ_0^{+} [/mm] mit:

      [mm] \vektor{n \\ k}:=\produkt_{j=1}^{k}\frac{n-j+1}{j} [/mm]

Wenn $k$ negativ ist, dann erhalten wir $0$.


Gruß
DieAcht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]