matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationDie Gamma Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Die Gamma Funktion
Die Gamma Funktion < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Die Gamma Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:19 So 16.05.2010
Autor: m0ppel

Aufgabe
a)
Zeigen Sie, dass es unendlich viele Funktionen [mm]F_{\lambda}:(0, \infty) \to \IR, \lambda \in \IR[/mm], mit der Eigenschaft
[mm]F_{\lambda} (n+1)=n![/mm], [mm]n \in \IN[/mm], gibt, so dass [mm]\gamma - F_{\lambda}[/mm] differenzierbar ist, [mm]\lambda \in \IR[/mm].

b) Beweisen Sie die Legendre-Verdopplungsformel:
[mm]\gamma (\bruch{x}{2})*\gamma (\bruch{x+1}{2})=\bruch{\wurzel{\pi}}{2^{x-1}}*\gamma (x) , x > 0[/mm]

Ich muss leider gestehen, dass ich zu der ersten Teilaufgabe keine Idee hab, wie ich das lösen könnte... Wäre echt lieb, wenn ihr mir ein paar Lösungsansätze geben könntet, damit ich da irgendwie weiter komme.

Zu Aufgabe b hab ich wenigstens schon einen Anfang:
z.z.[mm]\gamma (\bruch{x}{2})*\gamma (\bruch{x+1}{2})=\bruch{\wurzel{\pi}}{2^{x-1}}*\gamma(x)[/mm]

hier hab ich die Definition der Gamma Funktion genutzt:
[mm]\gamma (x)= \integral_{0}^{\infty}{t^{x-1}*exp(-t) dx}[/mm]
Setz man dies ein kommt:
[mm] \gamma (\bruch{x}{2})*\gamma (\bruch{x+1}{2})=\integral_{0}^{\infty}{t^{\bruch{x}{2}-1}*exp(-t) dx}*\integral_{0}^{\infty}{t^{\bruch{x+1}{2}-1}*exp(-t) dx} [/mm]
[mm] =\integral_{0}^{\infty}{t^{\bruch{x}{2}-1}*exp(-t)*t^{\bruch{x+1}{2}-1}*exp(-t) dx} [/mm]
[mm] =\integral_{0}^{\infty}{t^{\bruch{2x-3}{2}}*exp(-t)*exp(-t) dx} [/mm]
[mm] =\integral_{0}^{\infty}{t^{x-1}*exp(-t) dx}*\integral_{0}^{\infty}{t^{\bruch{1}{2}}*exp(-t) dx} [/mm]
der erste Faktor ist ja dann genau:
[mm]\gamma (x)= \integral_{0}^{\infty}{t^{x-1}*exp(-t) dx}[/mm]
Also ist nur noch zu zeigen, dass [mm] \integral_{0}^{\infty}{t^{\bruch{1}{2}}*exp(-t) dx}=\bruch{\wurzel{\pi}}{2^{x-1}} [/mm]

und genau hier komme ich nicht weiter...
wäre lieb, wenn mir einer helfen kann!
Danke schon mal!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Die Gamma Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:35 Mo 17.05.2010
Autor: Lyrn

Hallo!
Ich mache gerade die selbe Aufgabe.

Guck mal hier: https://matheraum.de/read?i=683618

Vielleicht hilft es ja :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]