matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenDie natuerliche Logarithmusf.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Exp- und Log-Funktionen" - Die natuerliche Logarithmusf.
Die natuerliche Logarithmusf. < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Die natuerliche Logarithmusf.: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:03 Fr 28.11.2008
Autor: Maaadin

Aufgabe
Geben Sie fuer jedes Intervall, auf dem die Funktion f definiert ist, eine Stammfunktion an.

Halloechen!
Moechte nur wissen, ob meine Rechnung richtig ist.
[mm] $f(x)=\frac{1}{x+1} [/mm] + [mm] \frac{1}{4x-1}$ [/mm]

also fuer x > 0:

[mm] $F(x)=ln(x+1)+\frac{1}{4}*ln(4x-1)$ [/mm]

fuer x < 0:

[mm] $F(x)=ln(-x-1)+\frac{1}{4}*ln(-4x+1)$ [/mm]

Stimmt das?

Gruss,
Martin

        
Bezug
Die natuerliche Logarithmusf.: Korrektur
Status: (Antwort) fertig Status 
Datum: 16:08 Fr 28.11.2008
Autor: Roadrunner

Hallo Maaadin!


Zusammengefasst hast Du schon die richtige Stammfunktion ermittelt mit:
$$F(x) \ = \ [mm] \ln|x+1|+\bruch{1}{4}\ln\left|4*x-1\right|$$ [/mm]

Jedoch stimmt Deine Intervalleinteilung nicht. Du musst hier für beide Terme [mm] $\left|x+1\right|$ [/mm] bzw. [mm] $\left|4*x-1\right|$ [/mm] separat untersuchen, wann diese nun positiv bzw. negativ sind.


Gruß vom
Roadrunner


Bezug
                
Bezug
Die natuerliche Logarithmusf.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:11 Fr 28.11.2008
Autor: reverend

...und wenn Du das hast, achte darauf, wie Du roadrunners Betragszeichen auflöst. Außer der bisher noch fraglichen Fallunterscheidung fehlt Dir selbst in der, die Du vorlegst, noch ein Minuszeichen.

Bezug
                        
Bezug
Die natuerliche Logarithmusf.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:28 Fr 28.11.2008
Autor: Maaadin

Aaah natuerlich.

Dann muesste es doch heissen:

$x < -1:$

$ [mm] f(x)=\frac{1}{x+1} [/mm] + [mm] \frac{1}{4x-1} [/mm] $


$x > [mm] \frac{1}{4}$ [/mm]

$ [mm] f(x)=\frac{1}{-x-1} [/mm] + [mm] \frac{1}{-4x-1} [/mm] $

Wo fehlt da ein Vorzeichen?!

Bezug
                                
Bezug
Die natuerliche Logarithmusf.: fehlender Bereich
Status: (Antwort) fertig Status 
Datum: 16:40 Fr 28.11.2008
Autor: Roadrunner

Hallo Maaadin!


Und was ist mit dem Bereich $-1 \ < \ x \ < \ [mm] \bruch{1}{4}$ [/mm] ?


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]