matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationDiffbarkeit Norm
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differentiation" - Diffbarkeit Norm
Diffbarkeit Norm < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diffbarkeit Norm: Beweis,Gegenbsp
Status: (Frage) beantwortet Status 
Datum: 22:23 Mo 03.10.2011
Autor: Balendilin

Aufgabe
Ist jede Norm auf [mm] \IR^N\setminus\{0\} [/mm] differenzierbar?

Hallo,

gezeigt habe ich bereits, dass keine Norm in [mm] 0\in\IR^N [/mm] differenzierbar ist. Und ich weiß auch, dass nicht jede Norm auf [mm] \IR^N\setminus\{0\} [/mm] differenzierbar ist . Und als Gegenbeispiel dient die 1-Norm [mm] ||x||_1=\sum |x_i| [/mm] oder die Maximumsnorm [mm] ||x||_\infty=\max|x_i| [/mm] für z.B. N=2.

Ich weiß aber nicht, wie ich das begründen kann.
Kann mir dabei jemand helfen? Danke! :-)

        
Bezug
Diffbarkeit Norm: Antwort
Status: (Antwort) fertig Status 
Datum: 23:53 Mo 03.10.2011
Autor: Blech

Hi,

wenn Du Gegenbeispiele hast, dann bist Du doch fertig.

Warum ist denn die Maximumsnorm im [mm] $\IR^2$ [/mm] nicht diffbar?


Oder weißt Du nur, daß es Gegenbeispiele sind, aber nicht wieso? =)

Betrachte mal bei der Maximumsnorm (1,1) und lauf jetzt zuerst von (1-h,1) und dann von (1+h,1) nach (1,1).
Ich weiß nicht, was Ihr alles verwenden dürft, und wie pedantisch die Erklärung werden soll, aber der Knick bei (1,1) sollte alle Kriterien reißen.

ciao
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]