Differential berechnen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:20 Fr 25.07.2008 | Autor: | johnny11 |
Aufgabe | Sei f: [mm] \IR^3 \to \IR [/mm] eine beliebige stetig partiell differentierbare Funktion und sei g: [mm] \IR^3 \to \IR^3 [/mm] gegeben durch [mm] g(x_1,x_2,x_3) [/mm] := [mm] g(x_1 [/mm] - [mm] x_2, x_1*x_2, x_1*x_3). [/mm] Berechne das Differential der Funktion h:= f [mm] \circ [/mm] g : [mm] \IR^3 \to \IR. [/mm] |
Was ist hier mit dem "Differential" genau gemeint? Müssen hier alle partiellen Ableitungen ausgerechnet werden? Oder muss der Differentialquotient berechnet werden, also [mm] \limes_{s\rightarrow0}\bruch{h(x+s) - h(x)}{s}?
[/mm]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:20 Fr 25.07.2008 | Autor: | pelzig |
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
> Was ist hier mit dem "Differential" genau
> gemeint? Müssen hier alle partiellen Ableitungen
> ausgerechnet werden?
Also die mathematische Erklärung:
Das Differential $Df$ oder $\partial f$, auch totale Ableitung genannt, ist eine Abbildung, die dir zu jedem Punkt $x_0\in\IR^3$ die zugehörige Lineare Abbildung $Df(x_0)$ bzw $\partial f(x_0)$ ausspuckt, sodass $f(x_0)+Df(x_0)(h)$ die "beste Lineare Approximation" von $f$ im Punkt $x_0$ ist. Also: du steckst einen Punkt in das Differential rein und bekommst eine (lineare) Abbildung von $\IR^3$ nach $\IR$
Die einfache Erklärung:
In diesem Fall ist das Differential (falls es existiert) im Punkt $x_0$ einfach $\pmat{\frac{\partial f}{\partial x_1}(x_0)&\frac{\partial f}{\partial x_2}(x_0)&\frac{\partial f}{\partial x_3}(x_0)$. Diese $1\times 3$-Matrix beschreibt dann eine Lineare Abbildung von $\IR^3\to\IR$.
> Oder muss der Differentialquotient
> berechnet werden, also [mm]\limes_{s\rightarrow0}\bruch{h(x+s) - h(x)}{s}?[/mm]
Das macht so überhaupt keinen Sinn, denn $s$ ist ein Vektor aus [mm] $\IR^3$, [/mm] wie willst du dadurch teilen? Wenn schon dann müsste es [mm] $\lim_{\parallel s\parallel\to0}\frac{h(x+s)-h(x)}{\parallel s\parallel}$ [/mm] heißen...
Gruß, Robert
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 14:13 Fr 25.07.2008 | Autor: | johnny11 |
>
> Die einfache Erklärung:
> In diesem Fall ist das Differential (falls es existiert)
> im Punkt [mm]x_0[/mm] einfach [mm]\pmat{\frac{\partial f}{\partial x_1}(x_0)&\frac{\partial f}{\partial x_2}(x_0)&\frac{\partial f}{\partial x_3}(x_0)[/mm].
> Diese [mm]1\times 3[/mm]-Matrix beschreibt dann eine Lineare
> Abbildung von [mm]\IR^3\to\IR[/mm].
>
Aber dann muss also [mm] g(x_1,x_2,x_3) [/mm] := [mm] (x_1-x_2 [/mm] , [mm] x_1*x_2 [/mm] , [mm] x_1*x_3) [/mm] gar nicht beachtet werden?
Und stimmt es , dass [mm]\pmat{\frac{\partial f}{\partial x_1}(x_0)&\frac{\partial f}{\partial x_2}(x_0)&\frac{\partial f}{\partial x_3}(x_0)[/mm] gerade dem Gradienten von f entspricht?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:20 Fr 25.07.2008 | Autor: | fred97 |
> >
> > Die einfache Erklärung:
> > In diesem Fall ist das Differential (falls es
> existiert)
> > im Punkt [mm]x_0[/mm] einfach [mm]\pmat{\frac{\partial f}{\partial x_1}(x_0)&\frac{\partial f}{\partial x_2}(x_0)&\frac{\partial f}{\partial x_3}(x_0)[/mm].
> > Diese [mm]1\times 3[/mm]-Matrix beschreibt dann eine Lineare
> > Abbildung von [mm]\IR^3\to\IR[/mm].
> >
> Aber dann muss also [mm]g(x_1,x_2,x_3)[/mm] := [mm](x_1-x_2[/mm] , [mm]x_1*x_2[/mm] ,
> [mm]x_1*x_3)[/mm] gar nicht beachtet werden?
Doch !
> Und stimmt es , dass [mm]\pmat{\frac{\partial f}{\partial x_1}(x_0)&\frac{\partial f}{\partial x_2}(x_0)&\frac{\partial f}{\partial x_3}(x_0)[/mm]
> gerade dem Gradienten von f entspricht?
Das ist der Gradient
>
Ich denke, Du sollst einfach die Fkt. h:= f $ [mm] \circ [/mm] $ g differenzieren (mit der Kettenregel ?)
FRED
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:57 Fr 25.07.2008 | Autor: | johnny11 |
ok, die kettenregel lautet ja folgendermassen: (f [mm] \circ [/mm] g = f'(g(x)) * g'(x))
[mm] g_1(x_1 [/mm] , [mm] x_2 [/mm] , [mm] x_3) [/mm] = [mm] x_1 [/mm] - [mm] x_2 [/mm]
[mm] g_2(x_1 [/mm] , [mm] x_2 [/mm] , [mm] x_3) [/mm] = [mm] x_1 [/mm] * [mm] x_2
[/mm]
[mm] g_3(x_1 [/mm] , [mm] x_2 [/mm] , [mm] x_3) [/mm] = [mm] x_1 [/mm] * [mm] x_3
[/mm]
Stimmt das überhaupt?
Nun erhalte ich also für Dg(x) folgende Matrix:
[mm] \pmat{ 1 & -1 & 0 \\ x_2 & x_1 & 0 \\ x_3 & 0 & x_1 }
[/mm]
Ist dies bis dahin korrekt?
Nun muss ich also noch [mm] Df(g(x_1 [/mm] , [mm] x_2 [/mm] , [mm] x_3)) [/mm] vorne dranmultiplizieren? Oder bin ich jetzt komplett auf dem falschen Weg?
|
|
|
|
|
Hallo johnny11,
> ok, die kettenregel lautet ja folgendermassen: (f [mm]\circ[/mm] g =
> f'(g(x)) * g'(x))
>
> [mm]g_1(x_1[/mm] , [mm]x_2[/mm] , [mm]x_3)[/mm] = [mm]x_1[/mm] - [mm]x_2[/mm]
>
> [mm]g_2(x_1[/mm] , [mm]x_2[/mm] , [mm]x_3)[/mm] = [mm]x_1[/mm] * [mm]x_2[/mm]
>
> [mm]g_3(x_1[/mm] , [mm]x_2[/mm] , [mm]x_3)[/mm] = [mm]x_1[/mm] * [mm]x_3[/mm]
>
> Stimmt das überhaupt?
>
> Nun erhalte ich also für Dg(x) folgende Matrix:
>
> [mm]\pmat{ 1 & -1 & 0 \\ x_2 & x_1 & 0 \\ x_3 & 0 & x_1 }[/mm]
>
> Ist dies bis dahin korrekt?
Ja.
> Nun muss ich also noch [mm]Df(g(x_1[/mm] , [mm]x_2[/mm] , [mm]x_3))[/mm] vorne
> dranmultiplizieren? Oder bin ich jetzt komplett auf dem
> falschen Weg?
Das ist genau richtig, was Du da schreibst.
Gruss
MathePower
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 13:43 So 27.07.2008 | Autor: | johnny11 |
Ok, jetzt bin ich mir einfach noch nicht ganz sicher, was [mm] Df(g(x_1 [/mm] , [mm] x_2 [/mm] , [mm] x_3)
[/mm]
ergibt.
Ich bin auf folgendes gekommen: [mm] (\bruch{\partial f}{\partial(x_1-x_2)} [/mm] , [mm] \bruch{\partial f}{\partial(x_1*x_2)} [/mm] , [mm] \bruch{\partial f}{\partial(x_1*x_3)} [/mm] )
Ist dies korrekt?
|
|
|
|
|
Hallo johnny11,
> Ok, jetzt bin ich mir einfach noch nicht ganz sicher, was
> [mm]Df(g(x_1[/mm] , [mm]x_2[/mm] , [mm]x_3)[/mm]
> ergibt.
> Ich bin auf folgendes gekommen: [mm](\bruch{\partial f}{\partial(x_1-x_2)}[/mm]
> , [mm]\bruch{\partial f}{\partial(x_1*x_2)}[/mm] , [mm]\bruch{\partial f}{\partial(x_1*x_3)}[/mm]
> )
>
> Ist dies korrekt?
>
Da f jetzt eine Funktion von [mm]g=\left(g_{1}, \ g_{2}, \ g_{3}\right)[/mm] ist, schreibt man dann:
[mm]\left(\bruch{\partial f}{\partial g_{1}}, \ \bruch{\partial f}{\partial g_{2}} , \ \bruch{\partial f}{\partial g_{3}}\right)[/mm]
Gruß
MathePower
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:44 So 27.07.2008 | Autor: | johnny11 |
Super, jetzt ists klar. Vielen Dank!
|
|
|
|