matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDifferentialgleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - Differentialgleichung
Differentialgleichung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:38 Di 20.10.2009
Autor: pelzig

Aufgabe
Seien a,b,L>0. Man löse das folgende AWP: [mm] $$x'(t)=\pmat{x_1'(t)\\x_2'(t)}=\frac{a}{\sqrt{x_1^2(t)+x_2^2(t)}}\pmat{x_1\\x_2}-\pmat{u\\0} \qquad\text{mit}\quad x(0)=\pmat{0\\L}$$ [/mm]

Hallo,

Diese DGL entstand beim Lösen einer anderen Aufgabe. Bei Bedarf kann ich das ursprüngliche Problem auch nochmal mit dazu posten und meinen bisherigen Lösungsweg erläutern. Ich bin nicht so fit im Lösen von DGL und wäre froh, wenn mir jemand sagen könnte ob man diese DGL analytisch lösen kann oder nicht und falls ja einen kleinen Schubs in die richtige Richtung geben könnte.

Viele Grüße,
Robert

        
Bezug
Differentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 01:55 Di 20.10.2009
Autor: Fulla

Hallo Robert,

was mir da gleich auffällt ist, dass da die Ableitung des Betrages drinsteckt:
[mm] $\frac{d}{dx_1}|x(t)|=\frac{d}{dx_1}\left(\sqrt{x_1^2+x_2^2}\right)=\frac{x_1}{\sqrt{x_1^2+x_2^2}}$ [/mm]

Genauso für [mm] $x_2$... [/mm] Wenn du da jetzt noch das $a$ reinbastelst, bist du schon fast da.

(Die Bedingung mit [mm] $r(0)=\ldots$ [/mm] soll wohl [mm] $x(0)=\ldots$ [/mm] heißen? Oder meint $r$ den Betrag von $x$?)


Lieben Gruß,
Fulla

Bezug
        
Bezug
Differentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 03:06 Di 20.10.2009
Autor: MatthiasKr

Hi Robert,

> Seien a,b,L>0. Man löse das folgende AWP:
> [mm]x'(t)=\pmat{x_1'(t)\\x_2'(t)}=\frac{a}{\sqrt{x_1^2(t)+x_2^2(t)}}\pmat{x_1\\x_2}-\pmat{u\\0} \qquad\text{mit}\quad x(0)=\pmat{0\\L}[/mm]
>  
> Hallo,
>  
> Diese DGL entstand beim Lösen einer anderen Aufgabe. Bei
> Bedarf kann ich das ursprüngliche Problem auch nochmal mit
> dazu posten und meinen bisherigen Lösungsweg erläutern.
> Ich bin nicht so fit im Lösen von DGL und wäre froh, wenn
> mir jemand sagen könnte ob man diese DGL analytisch lösen
> kann oder nicht und falls ja einen kleinen Schubs in die
> richtige Richtung geben könnte.

Hm, also ohne das u ist die aufgabe sehr leicht. Dann ist das richtungsfeld gegeben durch einheitsvektoren, die sternfoermig von (0,0) weglaufen. Loesungen sind dann also einfach alle geraden mit ursprung in 0.

Ich nehme an, u ist eine konstante? Ich wuerde es so versuchen: schreibe (x,y) statt [mm] (x_1,x_2). [/mm] Aus den gleichungen fuer [mm] $\partial_t x_i$ [/mm] kannst du mit ein wenig 'differential-arithmetik' eine gleichung fuer [mm] $\partial_y [/mm] x$ ableiten, naemlich

[math]\partial_y x=\frac{\partial x}{\partial y}=\frac{x}{y} - \frac{u}{a} \sqrt{\frac{x^2}{y^2}+1}[/math]

Die Details lasse ich weg, du musst das nochmal durchrechnen (auch falls ich einen fehler gemacht habe). Auf dem weg hierhin wurde $y>0$ verwendet. Ich betrachte x als funktion von y (statt wie ueblich y(x)), weil die entstehende Dgl. mir einfacher erscheint.

Solche DGLs der art [mm] $\partial_y x=f(\frac{x}{y})$ [/mm] kann man aber auf eine DGL mit getrennten Vars. ueberfuehren mit der substitution [mm] $z(y)=\frac{x}{y}$. [/mm] Es entsteht dann die DGL

[math]\partial_y z=\frac{1}{y}(f(z)-z)[/math]

All das kannst du zb. im forster 2 nachlesen. Habe die Gleichung nicht zuende gerechnet, sie sieht aber loesbar aus.

gruss
matthias


>  
> Viele Grüße,
>  Robert


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]