matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDifferentialgleichung finden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - Differentialgleichung finden
Differentialgleichung finden < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichung finden: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 14:22 Sa 21.05.2011
Autor: Roffel

Aufgabe
Die folgenden Funktionen sind Lösungen von DG's. Finden sie passende DG's.
(Hinweis : auf der rechten Seite der DGen sollten wieder x auftauchen.)

a) [mm] x(t)=e^{-3t}-t^{3}+t^{2}-\bruch{2}{3}*t+\bruch{2}{9} [/mm]

Hi
ich bräuchte mal eine genaue Vorgehensweie erläutert an diesem Beispiel... hab den Prinzip noch nicht raus.... und hab nur als Lösung da stehen:
[mm] x'=-3x-3t^{3} [/mm] und auf die Lösung komme ich nicht...

das einzige was ich bisher weiß das ich auf jedenfall einmal Ableiten muss, aber mehr auch nicht leider :)

da steht dann bei mir :

[mm] x'=-3e^{-3t}-3t^{2}+2t-\bruch{2}{3} [/mm] aber wie mach dann weiter? wie macht man das ganz allgemein?

Wäre nett wenn mir jemand helfen könnte...

Grüße

        
Bezug
Differentialgleichung finden: Antwort
Status: (Antwort) fertig Status 
Datum: 15:13 Sa 21.05.2011
Autor: fencheltee


> Die folgenden Funktionen sind Lösungen von DG's. Finden
> sie passende DG's.
>  (Hinweis : auf der rechten Seite der DGen sollten wieder x
> auftauchen.)
>  
> a) [mm]x(t)=e^{-3t}-t^{3}+t^{2}-\bruch{2}{3}*t+\bruch{2}{9}[/mm]
>  Hi
>  ich bräuchte mal eine genaue Vorgehensweie erläutert an
> diesem Beispiel... hab den Prinzip noch nicht raus.... und
> hab nur als Lösung da stehen:
>  [mm]x'=-3x-3t^{3}[/mm] und auf die Lösung komme ich nicht...
>  
> das einzige was ich bisher weiß das ich auf jedenfall
> einmal Ableiten muss, aber mehr auch nicht leider :)
>  
> da steht dann bei mir :
>  
> [mm]x'=-3e^{-3t}-3t^{2}+2t-\bruch{2}{3}[/mm] aber wie mach dann
> weiter? wie macht man das ganz allgemein?

jetzt fällt hier ja auf, dass hier viele terme aus der ausgangsgleichung auftauchen

hier bietet sich ja nun an, -3 auszuklammern, damit der e-term schonmal wie oben ist:

[mm] x'=-3*(e^{-3t}+t^2-\frac{2}{3}t+\frac{2}{9}) [/mm]

wie man sieht, tauchen hier alle terme aus x auf, bis auf [mm] -t^3 [/mm]
den "mogelt" man jetzt dazu

[mm] x'=-3*(e^{-3t}\red{-t^3+t^3}+t^2-\frac{2}{3}t+\frac{2}{9}) [/mm]
die roten terme ergeben ja jetzt zusammen 0, also haben wir nix falsch gemacht ;-)

der [mm] t^3 [/mm] stört aber nun und wird aus der klammer geschmissen

[mm] x'=-3*(e^{-3t}\red{-t^3}+t^2-\frac{2}{3}t+\frac{2}{9})\red{-3t^3} [/mm]

da die grosse klammer nun x entspricht ergibt sich
[mm] x'=-3*x-3t^3 [/mm]

>  
> Wäre nett wenn mir jemand helfen könnte...
>  
> Grüße

gruß tee

Bezug
                
Bezug
Differentialgleichung finden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:28 Sa 21.05.2011
Autor: Roffel

Danke danke danke!
das war mal eine "lupenreine" Erklärung, jetzt hab sogar ich es verstanden...
Vielen Dank :)

Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]