matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDifferentialgleichungen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Differentialgleichungen
Differentialgleichungen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichungen: DGLen lösen
Status: (Frage) beantwortet Status 
Datum: 17:38 Sa 04.02.2006
Autor: kunzm

Hallo mal wieder liebe mathechecker,

Die erste Aufgabe denke ich ist soweit ok, aber da ich das schon öfter gedacht habe bitte  nochmal korrekturlesen. Bei der Zweiten bleibe ich mitten drin hängen. Ich denke der Ansatz ist irgendwie zu umständlich.

Also zuerst mal:

[mm] \textbf{A1 Variation der Konstanten} [/mm]

Wir betrachten die DGL [mm] $y'(x)+g(x)y(x)+h(x)y^{\alpha}(x)=0,\,\,\alpha \not=1$. [/mm]

a) Substituieren Sie [mm] $z=y^{1-\alpha}$ [/mm] und formulieren Sie eine DGL für z.

[mm] $y'+gy+hy^{\alpha}=0\,\,\,|\,(1-\alpha)y^{-\alpha}$ [/mm]

[mm] $(1-\alpha)y^{-\alpha}y'+g(1-\alpha)y^{1-\alpha}=-(1-\alpha)h$ [/mm]


Sei nun [mm] $z:=y^{1-\alpha}$, [/mm] dann ist [mm] $z'=(1-\alpha)y^{-\alpha}y'$, [/mm] also folgt

[mm] $z'+g(1-\alpha)z=-(1-\alpha)h$. [/mm]

Dies ist eine DGL für z wie gewünscht.

b) Finden Sie auf diese Weise die Lösung der DGL [mm] $y'+\frac{y}{1+x}+(1+x)y^4=0$ [/mm] mit $y(0)=-1$.

Es gilt:

[mm] $y'+\frac{1}{1+x}y+(1+x)y^4=0\,\,\,|-3y^{-4}$ [/mm]

[mm] $-3y^{-4}y'+\frac{-3}{1+x}y^{-3}=3(1+x)$ [/mm]


Sei nun $z:= [mm] y^{-3}$. [/mm] Dann ist [mm] $z'=-3y^{-4}y'$ [/mm] und es folgt analog zu a):

[mm] $z'+\frac{-3}{1+x}z=3(1+x)$ [/mm]


Finden der homogenen Lösungen:

[mm] $z'(x)=\frac{3}{1+x}z(x)\,\,\,\Rightarrow\,\,\,\int\frac{1}{z(x)}\,dz(x)=\int\frac{3}{1+x}\,dx\,\,\,\Rightarrow\,\,\,\ln z(x)=3\ln [/mm] (1+x)+c$

[mm] $\Rightarrow\,\,\,z(x)=c\,(1+x)^3$ [/mm]


Finden einer speziellen Lösung:

[mm] $z(x)=c(x)\,(1+x)^3\,\,\,\Rightarrow\,\,\,z'(x)=c'(x)(1+x)^3+c(x)\,3(1+x)^2$ [/mm]

Einsetzen in den ursprünglichen Ausdruck liefert:

[mm] $c'(x)(1+x)^3+c(x)\,3(1+x)^2+\frac{-3}{1+x}\,c(x)\,(1+x)^3=3(1+x)$ [/mm]


[mm] $\Rightarrow$ $c'(x)=\frac{3}{(1+x)^2}$ [/mm]

[mm] $\Rightarrow$ $c(x)=\frac{-3}{1+x}$, [/mm]

also die spezielle Lösung

[mm] $z(x)=-3(1+x)^2$ [/mm]


Die allgemeine Lösung ergibt sich als Summe der homogenen und der speziellen zu:

[mm] $z(x)=c\,(1+x)^3-3(1+x)^2$ [/mm]

Rücknahme der Substitution und Auflösen nach $y$ ergibt schließlich:

[mm] $y(x)=\left(\sqrt[3]{c\,(1+x)^3-3(1+x)^2}\right)^{-1}$ [/mm]

Die Anfangsbedingung fordert zudem:

[mm] $c=(-1)^3+3$. [/mm]


Das ist soweit ok hoffe ich. Die nächste Aufgabe ist so eine Sache:


[mm] \textbf{A2 Variation der Konstanten} [/mm]

Bestimmen Sie die allgemeine Lösung des Differentialgleichungssystems

[mm] $y_1'=-y_2,\,\,\,\,y_2'=y_1+x$. [/mm]

Es gilt ebenso [mm] $y_1=y_2'-x$ [/mm] also auch [mm] $y_1'=y_2''-1$. [/mm] Einsetzen in die erste DGL entkoppelt:

[mm] $y_2''+y_2=1$ [/mm]

Die homogenen Lösungen folgen direkt aus dem Exponentialansatz zu:

[mm] $y_2(x)=c_1\,e^{ix}+c_2\,e^{-ix}$ [/mm]

Sei zur bestimmung einer speziellen Lösung nun o.B.d.A. [mm] $c_2=0$. [/mm] Dann folgt:

[mm] $y_2(x)=c_1(x)\,e^{ix}\,\,\,\Rightarrow\,\,\,y_2'(x)=c_1'(x)\,e^{ix}+i\,c_1(x)\,e^{ix}$ [/mm]

[mm] $\Rightarrow\,\,\,y_2''(x)=c_1''(x)\,e^{ix}+i\,c_1'(x)\,e^{ix}+i\,c_1'(x)\,e^{ix}-\,c_1(x)\,e^{ix}$ [/mm]

Einsetzen liefert:

[mm] $c_1''(x)\,e^{ix}+2i\,c_1'(x)\,e^{ix}=1$ [/mm]

....schon wieder eine DGL. Soll ich da jetzt einfach weitermachen, und diese auch lösen? Ich habe das auf diverse weisen versucht, bekomme aber neben transzendenten Ausdrücken nichts wirklich nützliches... Für einen kleinen Tipp wäre ich dankbar.


L.G.M.

        
Bezug
Differentialgleichungen: richtiger Ansatz
Status: (Antwort) fertig Status 
Datum: 21:43 Sa 04.02.2006
Autor: moudi


> Hallo mal wieder liebe mathechecker,

Hallo Martin

>  
> Die erste Aufgabe denke ich ist soweit ok, aber da ich das
> schon öfter gedacht habe bitte  nochmal korrekturlesen. Bei
> der Zweiten bleibe ich mitten drin hängen. Ich denke der
> Ansatz ist irgendwie zu umständlich.
>  
> Also zuerst mal:
>  
> [mm]\textbf{A1 Variation der Konstanten}[/mm]
>  
> Wir betrachten die DGL
> [mm]y'(x)+g(x)y(x)+h(x)y^{\alpha}(x)=0,\,\,\alpha \not=1[/mm].
>  
> a) Substituieren Sie [mm]z=y^{1-\alpha}[/mm] und formulieren Sie
> eine DGL für z.
>  
> [mm]y'+gy+hy^{\alpha}=0\,\,\,|\,(1-\alpha)y^{-\alpha}[/mm]
>  
> [mm](1-\alpha)y^{-\alpha}y'+g(1-\alpha)y^{1-\alpha}=-(1-\alpha)h[/mm]
>  
>
> Sei nun [mm]z:=y^{1-\alpha}[/mm], dann ist
> [mm]z'=(1-\alpha)y^{-\alpha}y'[/mm], also folgt
>  
> [mm]z'+g(1-\alpha)z=-(1-\alpha)h[/mm].
>  
> Dies ist eine DGL für z wie gewünscht.
>  
> b) Finden Sie auf diese Weise die Lösung der DGL
> [mm]y'+\frac{y}{1+x}+(1+x)y^4=0[/mm] mit [mm]y(0)=-1[/mm].
>  
> Es gilt:
>  
> [mm]y'+\frac{1}{1+x}y+(1+x)y^4=0\,\,\,|-3y^{-4}[/mm]
>  
> [mm]-3y^{-4}y'+\frac{-3}{1+x}y^{-3}=3(1+x)[/mm]
>  
>
> Sei nun [mm]z:= y^{-3}[/mm]. Dann ist [mm]z'=-3y^{-4}y'[/mm] und es folgt
> analog zu a):
>  
> [mm]z'+\frac{-3}{1+x}z=3(1+x)[/mm]
>  
>
> Finden der homogenen Lösungen:
>  
> [mm]z'(x)=\frac{3}{1+x}z(x)\,\,\,\Rightarrow\,\,\,\int\frac{1}{z(x)}\,dz(x)=\int\frac{3}{1+x}\,dx\,\,\,\Rightarrow\,\,\,\ln z(x)=3\ln (1+x)+c[/mm]
>  
> [mm]\Rightarrow\,\,\,z(x)=c\,(1+x)^3[/mm]
>  
>
> Finden einer speziellen Lösung:
>  
> [mm]z(x)=c(x)\,(1+x)^3\,\,\,\Rightarrow\,\,\,z'(x)=c'(x)(1+x)^3+c(x)\,3(1+x)^2[/mm]
>  
> Einsetzen in den ursprünglichen Ausdruck liefert:
>  
> [mm]c'(x)(1+x)^3+c(x)\,3(1+x)^2+\frac{-3}{1+x}\,c(x)\,(1+x)^3=3(1+x)[/mm]
>  
>
> [mm]\Rightarrow[/mm] [mm]c'(x)=\frac{3}{(1+x)^2}[/mm]
>  
> [mm]\Rightarrow[/mm] [mm]c(x)=\frac{-3}{1+x}[/mm],
>  
> also die spezielle Lösung
>  
> [mm]z(x)=-3(1+x)^2[/mm]
>  
>
> Die allgemeine Lösung ergibt sich als Summe der homogenen
> und der speziellen zu:
>  
> [mm]z(x)=c\,(1+x)^3-3(1+x)^2[/mm]
>  
> Rücknahme der Substitution und Auflösen nach [mm]y[/mm] ergibt
> schließlich:
>  
> [mm]y(x)=\left(\sqrt[3]{c\,(1+x)^3-3(1+x)^2}\right)^{-1}[/mm]
>  
> Die Anfangsbedingung fordert zudem:
>  
> [mm]c=(-1)^3+3[/mm].

[ok]

>  
>
> Das ist soweit ok hoffe ich. Die nächste Aufgabe ist so
> eine Sache:
>  
>
> [mm]\textbf{A2 Variation der Konstanten}[/mm]
>  
> Bestimmen Sie die allgemeine Lösung des
> Differentialgleichungssystems
>  
> [mm]y_1'=-y_2,\,\,\,\,y_2'=y_1+x[/mm].
>  
> Es gilt ebenso [mm]y_1=y_2'-x[/mm] also auch [mm]y_1'=y_2''-1[/mm]. Einsetzen
> in die erste DGL entkoppelt:
>  
> [mm]y_2''+y_2=1[/mm]
>  
> Die homogenen Lösungen folgen direkt aus dem
> Exponentialansatz zu:
>  
> [mm]y_2(x)=c_1\,e^{ix}+c_2\,e^{-ix}[/mm]
>  
> Sei zur bestimmung einer speziellen Lösung nun o.B.d.A.
> [mm]c_2=0[/mm]. Dann folgt:
>  
> [mm]y_2(x)=c_1(x)\,e^{ix}\,\,\,\Rightarrow\,\,\,y_2'(x)=c_1'(x)\,e^{ix}+i\,c_1(x)\,e^{ix}[/mm]
>  
> [mm]\Rightarrow\,\,\,y_2''(x)=c_1''(x)\,e^{ix}+i\,c_1'(x)\,e^{ix}+i\,c_1'(x)\,e^{ix}-\,c_1(x)\,e^{ix}[/mm]
>  
> Einsetzen liefert:
>  
> [mm]c_1''(x)\,e^{ix}+2i\,c_1'(x)\,e^{ix}=1[/mm]

Würde schon funktionieren. Aber es geht auch einfacher.
Die Inhomogenität ist ein Polynom (nämlich die Konstante 1). Für lineare DGL ist bekannt, dass eine spezielle Lösung in diesem Fall ebenfalls eine Polynomfunktion ist, und zwar vom gleichen Grad, da 0 keine Nullstelle des charakteristischen Polynoms ist.
Daher ist [mm] ${y_2}_p(x)$ [/mm] eine konstante Funktion, nämlich die Funktion [mm] ${y_2}_p(x)=1$ [/mm]

mfG Moudi

>  
> ....schon wieder eine DGL. Soll ich da jetzt einfach
> weitermachen, und diese auch lösen? Ich habe das auf
> diverse weisen versucht, bekomme aber neben transzendenten
> Ausdrücken nichts wirklich nützliches... Für einen kleinen
> Tipp wäre ich dankbar.
>  
>
> L.G.M.

Bezug
                
Bezug
Differentialgleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:03 Sa 04.02.2006
Autor: kunzm

Hmm,

danke, wenn $ [mm] {y_2}_p(x)=1 [/mm] $ also eine  partikuläre Lösung ist, wieso ist sie das. Das leuchtet mir noch nicht ganz ein.

L.G.M.

Bezug
                        
Bezug
Differentialgleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:28 Sa 04.02.2006
Autor: leduart

Hallo Martin
Lösungen bestätigt man immer durch einsetzen: y=1 y''=0: y''+y'=0+1=0
Der allgemeine Ansatz wäre y=A durch einsetzen y=1
entsprechen, wäre die inhomogenität ax+b,  wieder Ansatz  y=Ax+B , A und B durch Koeffizientenvergleich.
Es ist oft viel einfacher ne partikuläre lösung direkt zu sehen, als sie durch variation der Konstanten rauszukriegen:
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]