matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDifferentialgleichungen lösen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Differentialgleichungen lösen
Differentialgleichungen lösen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichungen lösen: ein paar Fragen
Status: (Frage) beantwortet Status 
Datum: 17:56 Fr 16.07.2010
Autor: keying

Hallo ihr Lieben!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich bin neu im im Matheraum und muss meinen Einstieg leider mit einer wichtigen Frage starten, da ich zur Zeit sehr verwirrt bin von verschiedenen Methoden zur Berechnung von Differentialgleichungen.
Ich fang dann mal an:
1. wie löst man eine Dgl mit doppelten Nullstellen
2. wie  löst man eine Dgl mit komplexen Eigenwerten
3. in wie weit unterscheidet sich der Lösungsweg von y'=Ay mit A diagonalisierbar und A nicht diagonalisierbar?
4. Wann braucht man genau die e-Funktion?

Wir haben eine Lösungsformel angegeben:

[mm] y(x)=C_1*e^{lambda_1*t}*v_1+... [/mm]

Nur ist mir nicht ganz klar inwiefern sich diese bei komplexen, doppelten etc Eigenwerten verändert.

Ich habe zwei Lösungswege. Mit dem einen komme ich auf die obige Gleichung, aber auch nur, wenn die EWe nicht doppelt etc sind. Und zwar:
1. EWe berechnen.
2. EVen berechnen und in Gleichung einsetzen.
3. Falls AWP vorhanden auch die Konstanten [mm] C_i [/mm] berechen.

Die zweite Lösungsmethode habe ich einem Buch gefunden. Ich weiß aber nicht genau, ob sie für alle Fälle gilt:
1. die berechneten EWe in die allgemeine Form [mm] y_1=C_1*e^{lambda_1*x}+C_2*e^{lambda_2*x} [/mm] einsetzen (hier zu einer 2x2-Matrix)
2. [mm] y_1 [/mm] ableiten und in die Gleichung [mm] y_2=1/a_1_2*(y'_1-a_1_1 *y_1) [/mm] einsetzen.
Ich weiß auch wie ich auf die Gleichung komme, aber darum gehts ja auch nicht.

Ich wäre um jede Hilfe dankbar, durch die ich meine Gedanken sortieren kann :)

Danke schonmal, keying


        
Bezug
Differentialgleichungen lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:20 Di 20.07.2010
Autor: wieschoo

Hi,
[willkommenmr]

dein Ansatz war $ [mm] y(x)=C_1\cdot{}e^{\lambda_1\cdot{}t}\cdot{}v_1+... [/mm] $

> wie löst man eine Dgl mit doppelten Nullstellen

Ansatz für doppelte Nullstelle [mm] \lambda_1 [/mm]
$ [mm] y(x)=(C_1 +t\cdot C_2)\cdot{}e^{\lambda_1\cdot{}t}+... [/mm] $

> wie  löst man eine Dgl mit komplexen Eigenwerten

Eigenwert=Nullstelle
Sei [mm] \lambda_1 [/mm] eine komplexe Nullstelle ds rellen Polynoms, dann ist auch ihre Konjugierte [mm] $\overline{\lambda_1}=\lambda_2$ [/mm] eine Nullstelle
$ [mm] y(x)=C_1\cdot{}e^{\lambda_1\cdot{}t}+ C_2\cdot{}e^{\lambda_2\cdot{}t}... [/mm] $

> in wie weit unterscheidet sich der Lösungsweg von y'=Ay mit A diagonalisierbar und A nicht diagonalisierbar?

siehe https://matheraum.de/read?t=701830

> Wann braucht man genau die e-Funktion?

Bei linearen DLG setzt man eigentlich [mm] $e^A$ [/mm] an wobei [mm] $A\in\IR^{n\times n}$ [/mm]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]