matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungDifferentialrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differenzialrechnung" - Differentialrechnung
Differentialrechnung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:53 So 10.01.2010
Autor: Anmo_199

Aufgabe
Für k Element von R ist [mm] fk(x)=k*x^5-1/3*x^3 [/mm]

Begründe, dass unabhängig von k jede Funktion fk stets mindestens einen Wendepunkt hat:                         (1) mithilfe der Differentialrechnung
                             (2) ohne auf die Differentialrechnung zurückzugreifen.

Also,
Ich hab das Problem, dass ich nicht weiß, was genau die von mir verlangen.

Die Differentialrechnung hat doch was mit y=m*x+n zu tun, oder?

Hab versucht die Steigung m mithilfe des Wendepunkts auszurechnen und da kam 0 raus. Aber stimmt das? Ich bin mir echt unsicher.
Wir rechnen nämlich auch mit so einem "hightec" Taschenrechner, was die Sache für mich zumindest noch mehr erschwierigt.

Danke für eure Hilfe!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Differentialrechnung: 2. Ableitung = 0
Status: (Antwort) fertig Status 
Datum: 23:03 So 10.01.2010
Autor: Loddar

Hallo Anmo,

[willkommenmr] !!


Nein, Die Differenzialrechnung hat etwas mit den "Ableitungen" [mm] $f_k'(x)$ [/mm] und [mm] $f_k''(x)$ [/mm] zu tun.

Wie lautet denn das notwendige Kriterium für eine Wendestelle? Dafür muss die 2. Ableitung [mm] $f_k''(x)$ [/mm] den Wert Null annehmen.


Gruß
Loddar


Bezug
                
Bezug
Differentialrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:04 Mo 11.01.2010
Autor: Anmo_199

Hmmm :)

Das heißt also dass ich aus dieser Funktion die 2.Ableitung bilden muss, oder?
Aber das hab ich doch schon gemacht. Wie gesagt, dann bekomm ich doch die x-Koordinate für den Wendepunkt oder nicht?

Da steht ja unabhängig von k. Heißt das, dass ich k einfach weglassen soll? Es tut mir leid. Ich bin in Mathe einfach 'ne Niete. :D



Bezug
                        
Bezug
Differentialrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:33 Mo 11.01.2010
Autor: Steffi21

Hallo, du hast

[mm] f(x)=k*x^{5}-\bruch{1}{3}x^{3} [/mm]

[mm] f''(x)=20*k*x^{3}-2x [/mm]

jetzt

[mm] 0=20*k*x^{3}-2x [/mm]

du erkennst sofort die Stelle [mm] x_W, [/mm] an der sich der Wendepunkt befindet, unabhängig von k

Steffi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]