matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungDifferentialrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differenzialrechnung" - Differentialrechnung
Differentialrechnung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialrechnung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:00 Mi 18.05.2011
Autor: RWBK

Aufgabe
Mit Hilfe der Differentialrechnung zeige man ,dass die Summe der beiden Funktionen arctan(x) und arccot(x) konstant ist. Geben Sie den Wert der Konstanten an.



Hallo,

mit dieser Aufgabe komme ich leider noch nicht so wirklich klar. Weiß ehrlich gesagt nicht ganz genau was die von mir wollen. Aber ich hab mich erstmal dran Versuch^^.

Hier erst einmal mein Ansatz:

arctan(x)+arccot(x) = [mm] \bruch{\pi}{2} [/mm] Dies habe ich in einer Formelsammlung gefunden. Wie man allerdings auf den [mm] \bruch{\pi}{2} [/mm]  kommt weiß ich nicht.
Dann hab ich mir mal so gedacht ich bilde die erste ableitung von arctan(x) und vom arccot(x)
Die lauten dann:
-für f(x)= arctan(x)
f´ [mm] (x)=\bruch{1}{1+x^{2}} [/mm]

und für f(x) = arccot
f´(x)=- [mm] \bruch{1}{1+x^{2}} [/mm]

Die Summe entspricht dann aber nicht  [mm] \bruch{\pi}{2}. [/mm] Was mache ich falsch? Kann mir jemand die Aufgabe erklären wenn ich etwas falsch mache?

Mfg
RWBK

        
Bezug
Differentialrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:06 Mi 18.05.2011
Autor: fred97

Du hast nichts falsch gemacht ! Setze

g(x):= arctan(x)+arccot(x)

Dann hast Du richtig gerechnet:

                  g'(x) =0 für jedes x [mm] \in \IR. [/mm]

Damit ist die Funktion g auf [mm] \IR [/mm] konstant, also ist

                     g(x)=g(0)=0 [mm] +\bruch{\pi}{2}= \bruch{\pi}{2} [/mm] für jedes x

FRED

Bezug
                
Bezug
Differentialrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:15 Mi 18.05.2011
Autor: RWBK

Hallo Fred,

danke erst einmal für deine schnelle Antwort. Freut mich das ich was richtig gemacht habe^^. Aber deine Antwort verstehe ich noch nicht ganz.Sorry! Meine funktion f(x) = arctan(x)+arccot(x) [mm] =\bruch{\pi}{2} [/mm]
f´(x) = ...( die Ableitungen eintragen schenke ich mir jetzt mal)=0
Das ist mir bis hier her ist mir alles klar dann ist Schluss. Denn das mit dem g bzw f auf [mm] \IR [/mm] KONSTANT versteh ich noch nicht. Ist vllt einrichtig dumme Frage aber kannst du mir das noch etwas genauer erklären?

Mfg


Bezug
                        
Bezug
Differentialrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:23 Mi 18.05.2011
Autor: schachuzipus

Hallo RWBK,

> Hallo Frad,

Fred? Freud?

>
> danke erst einmal für deine schnelle Antwort. Freud

Freud? Fred? Freut?

> mich
> das ich was richtig gemacht habe^^. Aber deine Antwort
> verstehe ich noch nicht ganz.Sorry! Meine funktion f(x) =
> arctan(x)+arccot(x) [mm]=\bruch{\pi}{2}[/mm]
> f´(x) = ...( die Ableitungen eintragen schenke ich mir
> jetzt mal)=0
> Das ist mir bis hier her ist mir alles klar dann ist
> Schluss. Denn das mit dem g bzw f auf [mm]\IR[/mm] KONSTANT versteh
> ich noch nicht. Ist vllt einrichtig dumme Frage aber kannst
> du mir das noch etwas genauer erklären?

Nun, die Ableitung ist überall 0, also [mm]f'(x)=0[/mm]

Wie kommst du an f?

Durch Integration, lax geschrieben: [mm]f(x)=\int{f'(x) \ dx}=\int{0 \ dx}=c[/mm], c konstant

Die Konstante c ermittelst du, indem du irgendein reelles Argument in [mm]f[/mm] stopfst, f nimmt ja für alle reellen Argumente denselben Wert c an.

Der Einfachheit halber setze [mm]x=0[/mm] ein:

[mm]c=f(0)=\arctan(0)+\arccot(0)=\pi/2[/mm]


>
> Mfg
>

Gruß

schachuzipus


Bezug
                                
Bezug
Differentialrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:39 Do 19.05.2011
Autor: fred97


> Hallo RWBK,
>  
> > Hallo Frad,
>  
> Fred? Freud?
>  
> >
> > danke erst einmal für deine schnelle Antwort. Freud
>
> Freud? Fred? Freut?
>  

Nennt mich einfach Fräd

FRED

Bezug
                        
Bezug
Differentialrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:42 Do 19.05.2011
Autor: fred97

Ergänzend:

Das dürfte Dir doch bekannt sein (zeigen kann man das mit dem Mittelwertsatz):

Ist I ein Intervall in [mm] \IR [/mm] und $f:I [mm] \to \IR$ [/mm] differenzierbar und gilt f'(x) =0 für jedes x [mm] \in [/mm] I, so ist f auf I konstant.

FRÄD



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]