matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungDifferentialrechnung Ableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differenzialrechnung" - Differentialrechnung Ableitung
Differentialrechnung Ableitung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialrechnung Ableitung: Frage Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:57 So 12.12.2004
Autor: fatrix

Hallo allerseits,

vertreibe mir jetzt schon seit gut ner Stunde die Zeit(eher unfreiwillig ;)) mit folgender Aufgabe:

[mm] f(x)=x^{n}\*n^{x} [/mm]

gesucht ist die 1. Ableitung

Komme mit dem zweiten Term nicht klar wo x der Exponent ist. Der erste Term würde abgeleitet [mm] nx^{n-1} [/mm] ergeben, aber wie leite ich den zweiten ab?


ps: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Differentialrechnung Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:16 So 12.12.2004
Autor: nitro1185

Hallo!!!Wieso vertreibst du dir unfreiwillig die Zeit mit dieser Aufgabe.Du bist duch naturwissenschaftlicher Student,oder??:-)!!!

Also der Trick bei dieser Aufgabe ist es,dass du den term [mm] n^{x} [/mm] umschreibst!!

Also: [mm] f(x)=x^{n}*n^{x}=x^{n}*e^{ln(n)*x} [/mm]

so jetzt kannst du ganz normal die Produktregel anwenden bzw.

die Tatsache, dass [mm] \bruch{dy}{dx} e^{x}=e^{x} [/mm]

Ich hoffe ich konnte dir weiterhelfen: PS:Ich bin Physikstudent im Grundstudium-was studierst du?

MFG Daniel

Bezug
        
Bezug
Differentialrechnung Ableitung: Lösung
Status: (Frage) beantwortet Status 
Datum: 14:37 So 12.12.2004
Autor: fatrix

Super Danke!

Oh hab mich wohl bei der Anmeldung verklickt, studiere WiWi ;)

Dann müsste die erste Ableitung ja wie folgt aussehen oder?

[mm] f(x)=nx^{n-1}n^{x}+x^{n}ln(n)n^{x} [/mm]

Bezug
                
Bezug
Differentialrechnung Ableitung: Richtig !!
Status: (Antwort) fertig Status 
Datum: 15:18 So 12.12.2004
Autor: Loddar

Hallo fatrix,

wenn Du ganz links auch schreibst f'(x) (Du hast den Hochstrich für die Ableitung unterschlagen :-) ), sage ich:

[mm] $f'(x)=n*x^{n-1}*n^{x} [/mm] + [mm] x^{n}*ln(n)*n^{x}$ [/mm] [ok] !!

Zur Verdeutlichung ruhig auch mal ein paar "Mal-Punkte" setzen ...

Grüße Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]