matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisDifferentiationsregeln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Schul-Analysis" - Differentiationsregeln
Differentiationsregeln < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentiationsregeln: Frage
Status: (Frage) beantwortet Status 
Datum: 07:51 Do 14.07.2005
Autor: Aliosha2004

Hallo!

Ich habe ein Problem , ''komplizierte Funktionen zu differenzieren.
Zum Beispiel:

[mm] f(x)=(3*x^2-1)^3/(x-1)^2 [/mm]

Als (leider falschen) Lösungsweg habe ich zB probiert:

1) Auf den Zähler die Kettenregel anwenden;d.h. [mm] g(x)=y=3*x^2-1 [/mm]
und [mm] h(y)=y^3 [/mm] ergibt verkettet : [mm] 18*x*(3*x^2-1)^2 [/mm]

2)Auf den Nenner ebenfalls Kettenregel anwenden: g(x)=y=x-1
und [mm] h(y)=y^2 [/mm] ergibt verkettet : 2*x-2

3)Der so entstandene Bruch wäre meiner Meinung nach bereits die fertige Ableitung, ist aber falsch!

Wo irre ich mich ?

P.S. das ist die richtige Lösung lt.Buch:

[mm] f'(x)=(3*x^2-1)^2*(12*x^2-18*x+2)/(x-1)^3 [/mm]


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Differentiationsregeln: Quotientenregel !!!
Status: (Antwort) fertig Status 
Datum: 08:02 Do 14.07.2005
Autor: Loddar

Hallo aliosha,

[willkommenmr] !!


> [mm]f(x)=(3*x^2-1)^3/(x-1)^2[/mm]

> 1) Auf den Zähler die Kettenregel anwenden; d.h. [mm]g(x)=y=3*x^2-1[/mm]
> und [mm]h(y)=y^3[/mm] ergibt verkettet : [mm]18*x*(3*x^2-1)^2[/mm]
>  
> 2) Auf den Nenner ebenfalls Kettenregel anwenden:
> g(x)=y=x-1 und [mm]h(y)=y^2[/mm] ergibt verkettet : 2*x-2


Die Einzelableitungen von Nenner und Zähler sind jeweils richtig, aber ...


... für die Ableitung von Brüchen (bzw. gebrochen-rationalen Funktionen) mußt Du die MBQuotientenregel anwenden:

[mm] $\left( \ \bruch{f}{g} \ \right)' [/mm] \ = \ [mm] \bruch{f'*g-f*g'}{g^2}$ [/mm]

Wenn Du nun also die entsprechenden Terme in diese Formel (unbedingt merken!) einsetzt, erhältst Du auch Deine vorgegebene Lösung.



[aufgemerkt] Ein weiterer Tipp:

Die Ableitung des Nenners nicht ausmultiplizieren, sondern als Produkt belassen mit $2*(x-1)_$, dann kannst Du nämlich noch wunderbar kürzen.
Am Ende den Term [mm] $\left(3x^2-1\right)^2$ [/mm] ausklammern.


Kommst Du nun weiter?

Gruß
Loddar


Bezug
                
Bezug
Differentiationsregeln: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 10:25 Do 14.07.2005
Autor: Aliosha2004

Hallo Loddar!

zuerst vielen Dank für deine Hilfe!

leider finde ich keine Lösung wie ich auf den Term

[mm] 18*x*(3*x^2-1)^2/2*(x-1) [/mm]

jetzt die Quotientenregel anwenden soll.

Schliesslich ist [mm] 18*x*(3*x^2-1)^2 [/mm] wieder eine verkettete Funktion....
(wie finde ich die Ableitung dazu-habe es mit ausmultiplizieren versucht aber das führt in eine Sackgasse..??

mfg

Aliosha2004


Bezug
                        
Bezug
Differentiationsregeln: In Formel einsetzen ...
Status: (Antwort) fertig Status 
Datum: 10:49 Do 14.07.2005
Autor: Loddar

Hallo Aliosha!


Hast Du Dir mal die Formel für die MBQuotientenregel angesehen?


Auf unsere Aufgabe $y \ = \ [mm] \bruch{\left(3x^2-1\right)^3}{(x-1)^2}$ [/mm] übertragen, heißt das doch:

$f \ := \ [mm] \left(3x^2-1\right)^3$ $\Rightarrow$ [/mm]    $f' \ = \ [mm] 3*\left(3x^2-1\right)^2*6x [/mm] \ = \ [mm] 18x*\left(3x^2-1\right)^2$ [/mm]

und

$g \ := \ [mm] (x-1)^2$ $\Rightarrow$ [/mm]    $g' \ = \ 2*(x-1)$

[mm] $g^2 [/mm] \ = \ [mm] \left[(x-1)^2\right]^2 [/mm] \ = \ [mm] (x-1)^4$ [/mm]


Und diese einzelnen Terme nun in o.g. Formel einsetzen und dann zusammenfassen, kürzen usw.


Gruß
Loddar


Bezug
                                
Bezug
Differentiationsregeln: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:30 Do 14.07.2005
Autor: Aliosha2004

Nochmal Hallo!

möchte mich bedanken-habs endlich kapiert wie es geht!

"Auch ein blindes Huhn findet einmal ein Korn.."

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]