matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete MathematikDifferenzengleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Diskrete Mathematik" - Differenzengleichung
Differenzengleichung < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzengleichung: Gleichung
Status: (Frage) überfällig Status 
Datum: 20:15 Mo 15.05.2006
Autor: Frankster

Aufgabe
(a) Geben Sie eine homogene linieare Differenzengleichung an, die  [mm] y_{t}=sin( \bruch{ \pi *t}{2}) [/mm] als eine spezielle Lösung hat.

(b) Wie lautet die allgemeine Lösung der Differenzengleichung von (a)

(c) Wie lautet jene spezielle Lösung von (b), für die [mm] y_{0} [/mm] = [mm] y_{1}=5 [/mm] ?

(d) Drücken Sie die Lösung von (c) ohne Verwendung einer Winkelfunktion aus ?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

1a) Ich hätte gesagt
[mm] y_{t} [/mm] =  [mm] y_{t}^{h} [/mm] + [mm] y_{t}^{s} [/mm]

[mm] y_{t}^{h} [/mm] = [mm] A*(-a)^{t} [/mm]
[mm] y_{t}^{s} [/mm] =  [mm] \bruch{s}{a + 1} [/mm]

s = sin( [mm] \bruch{ \pi *t}{2}) [/mm]
a = 1

[mm] y_{0}=5 [/mm]
5 = [mm] A*(-a)^{t} [/mm] * [mm] \bruch{s}{a + 1} [/mm]

5 = [mm] A*(-1)^{0} [/mm] * [mm] \bruch{\sin( \bruch{ \pi *0}{2})}{1+1} [/mm]
A = 5

und für [mm] y_{1} [/mm] rechnen wir genau so
--------------------------------------------------------------------------------------------

Nur ein Freund meint man muss folgende Formel nehmen

[mm] y_{t} [/mm] = [mm] r^{t}*(A1*\cos(\phi*t) [/mm] + [mm] A2*\sin(\phi*t)) [/mm]

r = 1 -> Keine Ahnung woher man das weiss

[mm] y_{t} [/mm] = [mm] r^{t}*(A1*\cos( \bruch{\pi*t}{2}) [/mm] + [mm] A2*\sin(\bruch{\pi*t}{2}) [/mm]

Woher weiss ich das aus [mm] \cos(\phi*t) [/mm] plötzlich [mm] \cos( \bruch{\pi*t}{2}) [/mm] wird?
Und wieso verwende ich überhaupt einen Cosinus wenn meine Ausgangsformel [mm] y_{t}=sin( \bruch{ \pi *t}{2}) [/mm] lautet ?

Für [mm] y_{0} [/mm] = 5
t = 0
[mm] y_{t} [/mm] = 5
A1 = 5

5 setze ich dann in die Gleichung für [mm] y_{1} [/mm] = 5 ein
5 = [mm] 1^{1}*(5*\cos( \bruch{\pi*1}{2}) [/mm] + [mm] A2*\sin(\bruch{\pi*1}{2}) [/mm]
A2 = 1,85

Lösung lautet nun:
[mm] y_{t} [/mm] = [mm] 1^{t}*(5*\cos( \bruch{\pi*t}{2}) [/mm] + [mm] 1,85*\sin(\bruch{\pi*t}{2}) [/mm]
---------------------------------------------------------------------------------------------

Welche Formel stimmt nun ?
Und habe ich es richtig gerechnet ?
Ich dachte diese [mm] y_{t} [/mm] = [mm] r^{t}*(A1*\cos( \bruch{\pi*t}{2}) [/mm] + [mm] A2*\sin(\bruch{\pi*t}{2}) [/mm] Formel verwendet man nur, wenn bei einer quadratischen Gleichung komplexe Zahlen raus kommen ?

Wie funktionert (d)
und was meinen die bei (a) ?
Vielen Dank im voraus
Frankster

        
Bezug
Differenzengleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:57 Mo 15.05.2006
Autor: Frankster

Ich denke ich habe die Lösung!

Und zwar funktionert das ganze so:

Ich soll ein [mm] y_{t} [/mm] finde dass mir [mm] sin(\bruch{\pi}{2}*t) [/mm] ausspuckt

Die allgemeine Form lautet:
[mm] y_{t}=r^{t}*(A_{1}+\cos(\phi*t)+(A_{2}*\sin(\phi*t)) [/mm]

Jetzt weiss man dass [mm] A_{2}=1 [/mm] weil sonst wäre [mm] sin(\bruch{\pi}{2}) [/mm] nicht erfüllt

[mm] \bruch{\pi}{2} [/mm] = 90° -> somit weiss ich dass [mm] \phi=90° [/mm]

Jetzt brauch ich mir nur mehr [mm] A_{1} [/mm] ausrechnen

[mm] y_{0}=y_{2}=-5 [/mm]

Wir rechnen für [mm] y_{0}=-5 [/mm]
[mm] -5=1^{0}*(A_{1}+\cos(90*0)+(1*\sin(90*0)) [/mm]
[mm] A_{1}=-5 [/mm]

Wir rechnen für [mm] y_{2}=-5 [/mm]
[mm] A_{1}=-5 [/mm]

[mm] y_{t}=sin(\bruch{\pi}{2}) [/mm] ist nur dann gegeben wenn [mm] y_{t} [/mm] das t ungerade ist, und wenn r = 1 -> weil sonst hauts mir alles wieder über den  Haufen ;)

Bsp:
t=1
[mm] y_{t}=1^{1}*(-5*\cos(90*1)+(1*\sin(90*1)) [/mm]
[mm] \cos(90)=0 [/mm]
[mm] \sin(90)=1 [/mm]

Erg:
[mm] y_{1}=0+1*sin(\bruch{\pi}{2}*1) [/mm]


Bezug
                
Bezug
Differenzengleichung: Darstellung ohne Winkelfunktio
Status: (Frage) überfällig Status 
Datum: 22:02 Mo 15.05.2006
Autor: Frankster

Nur wie stellt man jetzt

[mm] y_{t}=1^{t}*(-5*cos(90*t)+1*sin(90*t)) [/mm]

ohne die Winkelfunktionen dar ?

PS:
Könnte man es vielleicht so lösen ?

[mm] \sin(\phi)=\bruch{b}{r} [/mm]

[mm] b=\sin(\phi)*1 [/mm]


[mm] \cos(\phi)=\bruch{a}{r} [/mm]

[mm] a=\cos(\phi)*1 [/mm]


[mm] y_{t}=1^{t}*(-5*a+1*b) [/mm]

Mfg
Frankster

Bezug
                        
Bezug
Differenzengleichung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Mi 17.05.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 2h 44m 4. fred97
MaßTheo/Sigma-Algebra = P(X)
Status vor 1d 4h 03m 8. Gonozal_IX
MaßTheo/Beweis Sigma-Algebra
Status vor 2d 6. hohohaha1234
USons/Größtmöglichstes Produkt
Status vor 2d 2. matux MR Agent
Mathematica/parametrischen Plot
Status vor 2d 3. Gonozal_IX
UAuslg/Log. Äquivl. vs. log. Schluss
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]