matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungDifferenziation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differenzialrechnung" - Differenziation
Differenziation < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenziation: Kettenregel
Status: (Frage) beantwortet Status 
Datum: 14:09 Sa 27.01.2007
Autor: Stromberg

Aufgabe
f(x) = [mm] (x^2+2x)^5 [/mm]

Hallo allerseits,

ich habe diese Frage in keinem weiteren Internetforum gestellt.

Ich habe eine Frage zur Kettenregel !

Die oben genannte Aufgabe ist meines Wissens nach der Kettenregel abzuleiten.
Ich habe somit eine äußere Funktion und eine innere Funktion.
Die innere Funktion ist meines Wissens [mm] (x^2+2x) [/mm] und die äußere Funktion ist die hoch 5.

Ist das soweit richtig erkannt?

Meine Frage nun lautet:

Man geht bei der Kettenregel ja von aussen nach innen vor, also zunächst erst die äußere Funktion und dann die innere Funktion.
Kann mir jemand erklären wie ich in diesem Fall die Hochzahl 5 ableite?

Vielen Dank schonmal für eure Hilfe.

Gruß,
Stephan

        
Bezug
Differenziation: Antwort
Status: (Antwort) fertig Status 
Datum: 14:18 Sa 27.01.2007
Autor: Stefan-auchLotti


> f(x) = [mm](x^2+2x)^5[/mm]
>  Hallo allerseits,
>  

[mm] $\rmfamily \text{Hi,}$ [/mm]

> ich habe diese Frage in keinem weiteren Internetforum
> gestellt.
>  
> Ich habe eine Frage zur Kettenregel !
>  
> Die oben genannte Aufgabe ist meines Wissens nach der
> Kettenregel abzuleiten.
>  Ich habe somit eine äußere Funktion und eine innere
> Funktion.
>  Die innere Funktion ist meines Wissens [mm](x^2+2x)[/mm] und die
> äußere Funktion ist die hoch 5.
>  
> Ist das soweit richtig erkannt?
>

[mm] $\rmfamily \text{Richtig erkannt.}$ [/mm]

> Meine Frage nun lautet:
>  
> Man geht bei der Kettenregel ja von aussen nach innen vor,
> also zunächst erst die äußere Funktion und dann die innere
> Funktion.
>  Kann mir jemand erklären wie ich in diesem Fall die
> Hochzahl 5 ableite?
>  

[mm] $\rmfamily \text{Die Kettenregel: }\left[f\left(g\left(x\right)\right)\right]'=f'\left(g\left(x\right)\right)*g'\left(x\right)$ [/mm]

[mm] $\rmfamily g\left(x\right)\mathrel{\mathop:}=v=x^2+2x \Rightarrow [/mm] g'(x)=2x+2$

[mm] $\rmfamily f\left(v\right)=v^5 \Rightarrow f'\left(v\right)=5v^4=5\left(x^2+2x\right)^4$ [/mm]

[mm] $\rmfamily \text{Jetzt alles zusammensetzen: }\left[f\left(g\left(x\right)\right)\right]'=5\left(x^2+2x\right)^4*\left(2x+2\right)$ [/mm]


[mm] $\rmfamily \text{Gruß, Stefan.}$ [/mm]

> Vielen Dank schonmal für eure Hilfe.
>  
> Gruß,
>  Stephan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]