matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieDifferenzierbare Mannigfaltigk
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Topologie und Geometrie" - Differenzierbare Mannigfaltigk
Differenzierbare Mannigfaltigk < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbare Mannigfaltigk: Parakompaktheit
Status: (Frage) beantwortet Status 
Datum: 14:10 Fr 18.05.2012
Autor: icarus89

Aufgabe
Def. Eine n-dimensionale differenzierbare Mannigfaltigkeit ist ein Hausdorffraum M, der das zweite Abzählbarkeitsaxiom erfüllt, mit einem differenzierbaren n-Atlas.

Hallo,

es geht darum zu zeigen, dass eine diff'bare Mannigfaltigkeit (in der Def. oben) parakompakt ist, was anschaulich klar ist, da das ja nicht anderes ist, als ein glatt gekrümmter [mm] \IR^{n}. [/mm] In einigen Definition einer diffbaren Mgfkt wird Parakompaktheit auch gleich gefordert, woanders wird Metrisierbarkeit gefordert und aus Metrisierbarkeit folgt dann Parakompaktheit. Aber das sollte auch von der Definition ausgehend gezeigt werden können. Jede differenzierbare Mannigfaltigkeit besitzt wohl eine sogenannte Riemannsche Metrik, doch hab ich von der Theorie der Riemannschen Mannigfaltigkeiten keine Ahnung und auch nicht die Zeit die ganze Theorie dazu zu erarbeiten. Die Parakompaktheit ist nur eine Tatsache, die ich für einen Vortrag brauche und das sollte doch irgendwie auch einfacher gehen.
Sei [mm] \mathcal{U} [/mm] eine Überdeckung von M und sei [mm] \mathcal{A} [/mm] ein Atlas auf M. Für eine Karte $ [mm] \varphi:U\to [/mm] V $ ist [mm] \{\varphi(U\cap O)\}_{O\in\mathcal{U}} [/mm] eine offene Überdeckung von V. Wegen Parakompaktheit existiert eine lokal endliche Verfeinerung [mm] \mathcal{U}_{\varphi} [/mm]
Dann ist [mm] \bigcup_{\varphi\in \mathcal{A}} \mathcal{U}_{\varphi} [/mm] eine offene Überdeckung von M. Aber selbst wenn [mm] \mathcal{A} [/mm] abzählbar ist (das kann er doch sein, wegen dem 2. AA, oder?) ist das noch nicht lokal endlich...Kann man das jetzt weiter verwurschteln oder ist mein Ansatz falsch?

        
Bezug
Differenzierbare Mannigfaltigk: Antwort
Status: (Antwort) fertig Status 
Datum: 22:58 Fr 18.05.2012
Autor: SEcki


> Kann
> man das jetzt weiter verwurschteln oder ist mein Ansatz
> falsch?

Ist schon ok, blos reicht das nicht alleine - du brauchst noch, dass jedes x eine kompakte Umgebung hat (wg. lokal euklidisch). Dann kannst du induktiv den Raum durch Kompakta ausschöpfen, die jeweils mit endlich vielen Umgebungen (ggf. verkleineren) überdecken und erhälst induktiv, was du brauchst, siehe []das erste Kapitel hier. Reicht dir das?

SEcki


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]