matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationDifferenzierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differentiation" - Differenzierbarkeit
Differenzierbarkeit < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:08 Mi 03.12.2008
Autor: aliaszero

Aufgabe
In welchen Punkten sind die folgenden Funktionen differenzierbar? Berechnen Sie ggf. ihre ableitung:

[mm] f(x)=\begin{cases} 1-x, & \mbox{für} x \mbox{ <= 0 } \\ x²-x+1 , & \mbox{für } x \mbox{ >0 } \end{cases} [/mm]

[mm] g(x)=\begin{cases} \bruch{x}{1+e^{1/x}}, & \mbox{für } x \mbox{ \nicht 0} \\ 0, & \mbox{für } x \mbox{=0 } \end{cases} [/mm]

Hi,
ich weiß bei diesen Aufgaben gar nicht wie ich anfangen soll. Könnte mir bitte jemanden einen Ansatz geben?

lg

        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 23:24 Mi 03.12.2008
Autor: schachuzipus

Hallo aliaszero,

> In welchen Punkten sind die folgenden Funktionen
> differenzierbar? Berechnen Sie ggf. ihre ableitung:
>  
> [mm]f(x)=\begin{cases} 1-x, & \mbox{für} x \mbox{ <= 0 } \\ x²-x+1 , & \mbox{für } x \mbox{ >0 } \end{cases}[/mm]
>  
> [mm]g(x)=\begin{cases} \bruch{x}{1+e^{1/x}}, & \mbox{für } x \neq 0 \\ 0, & \mbox{für } x \mbox{=0 } \end{cases}[/mm]
>  
> Hi,
>  ich weiß bei diesen Aufgaben gar nicht wie ich anfangen
> soll. Könnte mir bitte jemanden einen Ansatz geben?

Beide Funktionen sind als Verkettung von Funktionen, die außerhalb von 0 diffbar sind, auch außerhalb von 0 diffbar.

Einzig an der Stelle $x=0$ gibt's möglicherweise Stress.

Nimm dir die Definition von Diffbarkeit her (Limes des Differenzenquotienten berechnen) und berechne jeweils den linksseitigen und rechtsseitigen Limes desselben

[mm] $\lim\limits_{x\downarrow 0}\frac{f(x)-f(0)}{x-0}$ [/mm] bzw. [mm] $\lim\limits_{x\uparrow 0}\frac{f(x)-f(0)}{x-0}$ [/mm]

Wahlweise auch mit der "h-Methode"

Wenn die linksseitigen und rechtsseitigen Limites jeweils existieren (also insbesondere endlich sind) und gleich sind, dann hast du gewonnen ;-)

Falls mind. einer nicht existiert oder sie unterschiedlich sind, Pech gehabt ;-)

>  
> lg


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]