Differenzierbarkeit < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:08 Mo 29.12.2008 | Autor: | MaRaQ |
Definiton (Differenzierbarkeit von f: I [mm] \rightarrow \IR^m [/mm] )
f = [mm] (f_1,...,f_m) [/mm] : I [mm] \rightarrow \IR^m [/mm] heißt differenzierbar in [mm] t_0 \in [/mm] I, falls alle Komponentenfunktionen [mm] f_1,...,f_m [/mm] in [mm] t_0 [/mm] differenzierbar sind. Die Funktion heißt auf I differenzierbar, falls sie in jedem Punkt t [mm] \in [/mm] I differenzierbar ist.
---
Zu dieser Definition habe ich eine Frage. Wenn ich jetzt eine Funktion nach dem Muster
[mm] f(n)=\begin{cases} g(n), & \mbox{für } I_1 \mbox{,} \\ h(n), & \mbox{für } I_2 \mbox{. } \end{cases}
[/mm]
und die frage habe, ob f(n) in einem Punkt [mm] t_0 [/mm] differenzierbar ist [mm] (t_0 \in I_1), [/mm] dann verstehe ich diese Definition so, dass ich dennoch beide Teilfunktionen auf Diffbarkeit in [mm] t_0 [/mm] untersuchen muss?
Konkreter vielleicht mit [mm] I_1 [/mm] = [mm] (-\infty,t_0] [/mm] und [mm] I_2 [/mm] = [mm] (t_0,\infty). [/mm]
Das verwirrt mich gerade enorm.
lg, Tobias
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:11 Mo 29.12.2008 | Autor: | zetamy |
Hallo Tobias,
ich glaube du bringst du was durcheinander
> Definiton (Differenzierbarkeit von f: I [mm]\rightarrow \IR^m[/mm]
> )
>
> f = [mm](f_1,...,f_m)[/mm] : I [mm]\rightarrow \IR^m[/mm] heißt
> differenzierbar in [mm]t_0 \in[/mm] I, falls alle
> Komponentenfunktionen [mm]f_1,...,f_m[/mm] in [mm]t_0[/mm] differenzierbar
> sind. Die Funktion heißt auf I differenzierbar, falls sie
> in jedem Punkt t [mm]\in[/mm] I differenzierbar ist.
Ein Beispiel ist hier $f: [mm] ]0,1[\rightarrow \IR^2$ [/mm] mit [mm] $f(t):=(f_1(t),f_2(t) [/mm] ):= (t, ln(t) )$. f ist genau dann differenzierbar, wenn [mm] $f_1$ [/mm] und [mm] $f_2$ [/mm] differenzierbar sind.
> ---
>
> Zu dieser Definition habe ich eine Frage. Wenn ich jetzt
> eine Funktion nach dem Muster
> [mm]f(n)=\begin{cases} g(n), & \mbox{für } I_1 \mbox{,} \\ h(n), & \mbox{für } I_2 \mbox{. } \end{cases}[/mm]
>
> und die frage habe, ob f(n) in einem Punkt [mm]t_0[/mm]
> differenzierbar ist [mm](t_0 \in I_1),[/mm] dann verstehe ich diese
> Definition so, dass ich dennoch beide Teilfunktionen auf
> Diffbarkeit in [mm]t_0[/mm] untersuchen muss?
Ja und nein. Liegt [mm] $t_0$ [/mm] in [mm] $I_1$ [/mm] und [mm] $t_0\in\partial I_2$, [/mm] also wie in deinem Beispiel mit [mm] $I_1=]-\infty,t_o]$ [/mm] und [mm] $I_2=]t_0,\infty]$, [/mm] dann musst du prüfen, ob g in [mm] $t_0$ [/mm] differnzierbar ist und ob [mm] $lim_{t\rightarrow t_0} h'(t)=g'(t_0)$, [/mm] also ob der Übergang (oft "Klebestelle" genannt) stetig ist.
Ein Beispiel ist $f: [mm] ]-1,1[\rightarrow \IR^2$ [/mm] mit $f(t)= [mm] \begin{cases} (t, ln(t) ) & \text{für } ]0,1[ \\ (t,t) & \text{für } ]-1,0] \end{cases} \quad [/mm] $.
Dann ist $(t,t)'=(1,1)$ aber [mm] $lim_{t\rightarrow 0} [/mm] (1, [mm] \frac{1}{t}) [/mm] = [mm] (1,\infty) \neq [/mm] (1,1)$. Somit ist f in $t=0$ nicht differenzierbar,
Falls [mm] $t_0\iin I_1$ [/mm] und [mm] $t_0\not \in\partial I_2$, [/mm] dann genügt es die Differenzierbarkeit von [mm] $g(t_0)$ [/mm] zu zeigen.
>
> Konkreter vielleicht mit [mm]I_1[/mm] = [mm](-\infty,t_0][/mm] und [mm]I_2[/mm] =
> [mm](t_0,\infty).[/mm]
>
> Das verwirrt mich gerade enorm.
>
> lg, Tobias
Gruß, zetamy
|
|
|
|