matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationDifferenzierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differentiation" - Differenzierbarkeit
Differenzierbarkeit < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:24 Mo 03.10.2011
Autor: Jules-20

Hallo ihr lieben
hab mal wieder ein problem mit ner aufgabe und wäre super wenn mir jmd helfen könnte:

ist folgende funktion auf x1=0 differenzierbar

f(x) = [mm] \wurzel{|x|} [/mm]

die geben in der lösung an:
xn=1/n
[mm] \limes_{n\rightarrow\infty} \wurzel{|1/n|} [/mm] / 1/n = [mm] \limes_{n\rightarrow\infty} \wurzel{|n^2/n|} [/mm] =  [mm] \infty [/mm]

und das gleiche nochmal für  xn=-1/n

iwie versteh ich nich so ganz wie man auf xn kommt und wofür man es überhaupt braucht und die umformung versteh ich iwie auch nich :(

liebe grüße
jule


        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:34 Mo 03.10.2011
Autor: M.Rex

Hallo

Damit die Funktion an der "kritischen Stelle", hier der Null differenzierbar ist, müssen rechts und linksseitiger Grenzwert übereinstimmen und nicht "unendlich" sein. Und dazu sind dann eben die Folgen [mm] 0+\frac{1}{n} [/mm] und [mm] 0-\frac{1}{n} [/mm] eingeführt worden, diese laufen für [mm] n\to\infty [/mm] gegen Null.

Eleganter wäre vielleicht folgender Weg:

[mm] \lim_{h\to0}\frac{\sqrt{|0-h|}-\sqrt{|0|}}{h} [/mm]
[mm] =\lim_{h\to0}\frac{\sqrt{|-h|}-0}{h} [/mm]
[mm] =\lim_{h\to0}\frac{\sqrt{h}}{h} [/mm]
[mm] =\lim_{h\to0}\frac{\sqrt{h}}{\sqrt{h}\cdot\sqrt{h}} [/mm]
[mm] =\lim_{h\to0}\frac{1}{\sqrt{h}} [/mm]
[mm] =\ldots [/mm]

Bestimme analog mal

[mm] \lim_{h\to0}\frac{\sqrt{|0+h|}-\sqrt{|0|}}{h} [/mm]

Marius


Bezug
                
Bezug
Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:42 Mo 03.10.2011
Autor: Jules-20

huhu

danke für deine schnelle antwort! wie kommst du aber von:

[mm] \limes_{n\rightarrow\infty} \wurzel{h}/h [/mm]  auf
[mm] \limes_{n\rightarrow\infty} \wurzel{h}/(\wurzel{h}*\wurzel{h}) [/mm]

?!

lg jule

Bezug
                        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:46 Mo 03.10.2011
Autor: angela.h.b.


> huhu
>  
> danke für deine schnelle antwort! wie kommst du aber von:
>  
> [mm]\limes_{n\rightarrow\infty} \wurzel{h}/h[/mm]  auf
>  [mm]\limes_{n\rightarrow\infty} \wurzel{h}/(\wurzel{h}*\wurzel{h})[/mm]


Hallo,

es ist nunmal [mm] (\wurzel{x})^2=x. [/mm]

Merke Dir: wenn man die Wurzel aus einer Zahl quadriert, kommt die Zahl selbst raus.

Beispiel: [mm] \wurzel{3}*\wurzel{3}=\wurzel{3*3}=\wurzel{9}=3. [/mm]

Gruß v. Angela


Bezug
                                
Bezug
Differenzierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:50 Mo 03.10.2011
Autor: Jules-20

danke grad is der groschen gefallen, wie man so schön sagt...
:P

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]