matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Differenzierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Analysis des R1" - Differenzierbarkeit
Differenzierbarkeit < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit: Tipp
Status: (Frage) beantwortet Status 
Datum: 08:36 Mo 16.01.2012
Autor: hubbel

Aufgabe
http://www.myimg.de/?img=diffd6081.jpg

Verstehe nicht den Unterschied zwischen beidem, habe folgende Definitionen:

1. f heißt differenzierbar auf D, wenn alle f in allen Punkten aus D differenzierbar ist. In diesem Fall nennt man die Funktion

f': D -> [mm] \IR, [/mm] a|->f'(a)

2. Ist f differenzierbar und f': D -> [mm] \IR [/mm] stetig, so nennt man f stetig differenzierbar. Man setzt

[mm] C^{-1}(D):={f: D -> \IR: f stetig differenzierbar} [/mm]

So wie ich es verstanden habe, müsste ich zeigen, dass die Funktion differenzierbar ist, aber nicht stetig. Dann hätte ich es ja soweit. Ich würde also erstmal mit dem [mm] \epsilon-\delta-Kriterium [/mm] herangehen und dann die Differenzierbarkeit mit dem Differenzenquotienten zeigen, was haltet ihr davon?

Danke schonmal!


        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:46 Mo 16.01.2012
Autor: fred97


> http://www.myimg.de/?img=diffd6081.jpg
>  Verstehe nicht den Unterschied zwischen beidem, habe
> folgende Definitionen:
>  
> 1. f heißt differenzierbar auf D, wenn alle f in allen
> Punkten aus D differenzierbar ist. In diesem Fall nennt man
> die Funktion
>
> f': D -> [mm]\IR,[/mm] a|->f'(a)
>  
> 2. Ist f differenzierbar und f': D -> [mm]\IR[/mm] stetig, so nennt
> man f stetig differenzierbar. Man setzt
>
> [mm]C^{-1}(D):={f: D -> \IR: f stetig differenzierbar}[/mm]

Nein !

                             [mm]C^{1}(D):=\{f: D -> \IR: f ~stetig ~differenzierbar\}[/mm]

>  
> So wie ich es verstanden habe, müsste ich zeigen, dass die
> Funktion differenzierbar ist, aber nicht stetig.


Unsinn ! Eine differenzierbare Funktion ist stetig !

Du mußt zeigen: f ist differenzierbar und f' ist nicht stetig !


> Dann
> hätte ich es ja soweit. Ich würde also erstmal mit dem
> [mm]\epsilon-\delta-Kriterium[/mm] herangehen und dann die
> Differenzierbarkeit mit dem Differenzenquotienten zeigen,
> was haltet ihr davon?


Dass f in Punkten x [mm] \ne [/mm] 0 differenzierbar ist, dürfte klar sein (Komposition differenzierbarer Funktionen)

Zeige mit dem Differenzenquotienten, dass f in x=0 differenzierbar ist mit f'(0)=0.

f' ist in x=0 nicht stetig. Dazu finde eine Folge [mm] (x_n) [/mm] mit [mm] x_n \to [/mm] 0, so, dass [mm] (f'(x_n)) [/mm] nicht gegen f'(0) konv.

FRED

>  
> Danke schonmal!
>  


Bezug
                
Bezug
Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:37 Mo 16.01.2012
Autor: hubbel

Gut stimmt, ja damit eine Funktion differenzierbar ist, muss sie stetig sein, aber was ist nun der Unterschied zwischen stetig differenzierbar und nur differenzierbar?

Der Quotient sieht doch so aus:

[mm] \lim_{x \to a} \left( \bruch{f(x)-f(a)}{x-a} \right)=\lim_{x \to a} \left( \bruch{0-a^2sin(1/a))}{0-a} \right) [/mm]

Wäre das so richtig? Und wie mache ich da weiter?


Bezug
                        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:14 Mo 16.01.2012
Autor: Zwerglein

Hi, hubbel,

> Gut stimmt, ja damit eine Funktion differenzierbar ist,
> muss sie stetig sein, aber was ist nun der Unterschied
> zwischen stetig differenzierbar und nur differenzierbar?
>
> Der Quotient sieht doch so aus:
>
> [mm]\lim_{x \to a} \left( \bruch{f(x)-f(a)}{x-a} \right)=\lim_{x \to a} \left( \bruch{0-a^2sin(1/a))}{0-a} \right)[/mm]
>
> Wäre das so richtig?

Nö! Zunächst mal ist ja a = 0
Im lim bleibt also das x stehen

> Und wie mache ich da weiter?

Du kannst anschließend durch x kürzen und mit Hilfe einer Abschätzung für den Sinus zeigen, dass der Grenzwert =0 ist.


Anschließend rechnest Du für x [mm] \neq [/mm] 0 die Ableitung f'(x) aus und zeigst, dass für diese der Grenzwert x [mm]\to[/mm]0 nicht existiert.

(Einerseits ist ja f'(0)=0 laut Deiner obigen Grenzwertrechnung, andererseits findest Du - mit ein bisschen Probieren ;-) - eine Folge für x, für die der Grenzwert nicht 0 ist, sondern z.B. -1.)


mfG!

Zwerglein



Bezug
                        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:36 Mo 16.01.2012
Autor: fred97


> Gut stimmt, ja damit eine Funktion differenzierbar ist,
> muss sie stetig sein, aber was ist nun der Unterschied
> zwischen stetig differenzierbar und nur differenzierbar?


stetig differenzierbar = differenzierbar+ Stetigkeit der Ableitung.

FRED

>  
> Der Quotient sieht doch so aus:
>  
> [mm]\lim_{x \to a} \left( \bruch{f(x)-f(a)}{x-a} \right)=\lim_{x \to a} \left( \bruch{0-a^2sin(1/a))}{0-a} \right)[/mm]
>  
> Wäre das so richtig? Und wie mache ich da weiter?
>  


Bezug
                                
Bezug
Differenzierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Mo 16.01.2012
Autor: hubbel

Habe es mittlerweile verstanden, danke euch!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]