matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungDifferenzieren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differenzialrechnung" - Differenzieren
Differenzieren < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:20 Di 19.01.2010
Autor: AMDFreak2006

Aufgabe
Untersuchen Sie f(x) = [mm] e^x [/mm] für x<0
                       x+1 für x>=0

auf Differenzierbarkeit an der Stelle x = 0.

Ergänzung: e = eulersche Zahl

Hallo, ich hab momentan garkeine Ahnung ob meine Lösung richtig ist:

Ich habe folgendermaßen gerechnet:

lim [mm] \bruch{f(x0+h)-f(x0)}{h} [/mm]
h->0

lim [mm] \bruch{(e^x0+h)-e^x0}{h} [/mm]
h->0

= 0


lim [mm] \bruch{f(x0+h)-f(x0)}{h} [/mm]
h->0

lim [mm] \bruch{(x0+1)+h)-(x0+1)}{h} [/mm]
h->0

= 0

Folglich ist die Funktion an der Stelle x = 0 differenzierbar, oder?

Vielen Dank im Voraus.

        
Bezug
Differenzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 09:08 Di 19.01.2010
Autor: nooschi


> Untersuchen Sie f(x) = [mm]e^x[/mm] für x<0
>                         x+1 für x>=0
>  
> auf Differenzierbarkeit an der Stelle x = 0.
>  
> Ergänzung: e = eulersche Zahl
>  Hallo, ich hab momentan garkeine Ahnung ob meine Lösung
> richtig ist:
>  
> Ich habe folgendermaßen gerechnet:
>  
> lim [mm]\bruch{f(x0+h)-f(x0)}{h}[/mm]
>  h->0
> lim [mm]\bruch{(e^x0+h)-e^x0}{h}[/mm]
>  h->0
>  
> = 0

das scheint mir falsch zu sein.
[mm] \limes_{h\to 0-0}\bruch{f(x_0+h)-f(x_0)}{h}=\limes_{h\to 0-0}\bruch{e^h-e^0}{h}=\limes_{h\to 0-0}\bruch{e^h-1}{h}=1 [/mm]
das letzte Gleichzeichen muss man noch zeigen, wir haben das in der VL einmal bewiesen, war aber, wenn ich mich recht erinnere etwas unschön. Falls ihr das noch nicht bewiesen habt, musst du das am besten mit Umformungen, ausgehend von dem: [mm] |\bruch{e^h-1}{h}-1|=|\bruch{\summe_{i=1}^{n}\bruch{h^i}{i!}-1}{h}-1|=... [/mm] machen. (soll dann am Schluss [mm] \le [/mm] 0 werden, das < kann wegen den Betragsstrichen ausgeschlossen werden, also gilt = 0)

>  
>
> lim [mm]\bruch{f(x0+h)-f(x0)}{h}[/mm]
>  h->0
>  
> lim [mm]\bruch{(x0+1)+h)-(x0+1)}{h}[/mm]
>  h->0
>  
> = 0

das ist dementsprechend auch falsch.
[mm] \limes_{h\to 0+0}\bruch{f(x0+h)-f(x0)}{h}=\limes_{h\to 0+0}\bruch{f(h)-f(0)}{h}=\limes_{h\to 0+0}\bruch{h+1-(0+1)}{h}=\limes_{h\to 0+0}\bruch{h}{h}=1 [/mm]

>  
> Folglich ist die Funktion an der Stelle x = 0
> differenzierbar, oder?
>  
> Vielen Dank im Voraus.



Bezug
                
Bezug
Differenzieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:59 Mi 20.01.2010
Autor: AMDFreak2006

Ok danke, das hat mir auf jeden Fall weitergeholfen.

mfg

Matze

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]