matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeDimension, Basis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Moduln und Vektorräume" - Dimension, Basis
Dimension, Basis < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimension, Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:32 Mo 28.11.2011
Autor: Ashley22

Aufgabe
Bestimme die Dimension der folgenden Untervektorräume des [mm] \IR [/mm] 3 durch Angabe einer Basis:

W:=(x1,x2,x3) element [mm] \IR [/mm] 3 : x1-x2=0 [mm] \wedge [/mm] x2-x3=0

Ich habe bei dieser Aufgabe zunächst nach den einzelnen Variablen aufgelöst:

x2=x1 [mm] \wedge [/mm] x2=3

wenn ich das nun zusammenfüge komme ich auf x1=x2=x3

und dann wäre eine Basis von W beispielsweise (1,1,1)
und die dim W=1

kann das so sein?

ich habe diese Frage auf keiner anderen Internetseite gestellt

        
Bezug
Dimension, Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 15:35 Mo 28.11.2011
Autor: fred97


> Bestimme die Dimension der folgenden Untervektorräume des
> [mm]\IR[/mm] 3 durch Angabe einer Basis:
>  
> W:=(x1,x2,x3) element [mm]\IR[/mm] 3 : x1-x2=0 [mm]\wedge[/mm] x2-x3=0
>  Ich habe bei dieser Aufgabe zunächst nach den einzelnen
> Variablen aufgelöst:
>  
> x2=x1 [mm]\wedge[/mm] x2=3
>  
> wenn ich das nun zusammenfüge komme ich auf x1=x2=x3
>  
> und dann wäre eine Basis von W beispielsweise (1,1,1)
>  und die dim W=1
>  
> kann das so sein?

Es kann nicht nur so sein, es ist so

FRED

>  
> ich habe diese Frage auf keiner anderen Internetseite
> gestellt


Bezug
                
Bezug
Dimension, Basis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:40 Mo 28.11.2011
Autor: Ashley22

okay, dankeschön

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]