matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraDimension von Liealgebren
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebra" - Dimension von Liealgebren
Dimension von Liealgebren < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimension von Liealgebren: Idee
Status: (Frage) überfällig Status 
Datum: 17:47 Mi 27.07.2011
Autor: gnasen

Aufgabe
Wieviele halbeinfache Liealgebren der Dimension 8 gibt es (bis auf Isomorphie)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Unser Tutor stellte uns diese Frage nebenbei während eines Tutoriums und irgendwie will sie nicht aus meinem Kopf.
Zunächst denke ich mal, dass er die komplexen halbeinfachen Liealgebren meint (weil wir nur diese klassifiziert haben). Was ich mir bisher gedacht habe:

Es gilt ja:
L komplexe Liealgebra, dg:
L halbeinfach [mm] \gdw [/mm] L = [mm] I_1 \oplus [/mm] ... [mm] \oplus I_n [/mm] wobei [mm] I_i [/mm] einfache Ideale von L.

Die klassischen Liealgebren sind ja [mm] sl(n,\IC), so(n,\IC) [/mm] und [mm] sp(n,\IC). [/mm] Aus Dimensionsgründen kommt hier nur [mm] sl(3,\IC) [/mm] mit Dimension 8 in Frage. [mm] sl(2,\IC) [/mm] hat nur Dimension 3, [mm] so(n,\IC) [/mm] und [mm] sp(n,\IC) [/mm] haben mindestens schon dimension 10 (oder sind für kleinere n isomorph zu [mm] sl(n,\IC)). [/mm]

Nun das Hauptproblem:
Wir haben in der Klassifizierung über die Dynkindiagramme gesehen, dass es noch abstrakte einfache Liealgebren gibt zu den Diagrammen E6, E7, E8, F4 und G2. Diese kann man über den Satz von Serre zwar theoretisch konstruieren, aber mir ist nicht klar, wie ich die Dimension bestimmen könnte.
Zudem würde ich gerne wissen, ob schon jemand eine Darstellung eben dieser in angenehmer Form wie zB den bekannten sl, so und sp gebastelt hat (oder ob dies evtl gar nicht möglich ist). Ich konnte dazu bisher leider nichts finden.

Schonmal vielen Dank!

        
Bezug
Dimension von Liealgebren: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Fr 29.07.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]