matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraDimension von Unterräumen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Dimension von Unterräumen
Dimension von Unterräumen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimension von Unterräumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:04 Do 25.11.2004
Autor: Nette20

Hi!
Habe eine kleines Problem, das etwas eilt.
Folgende Aufgabenstellung:
a=(1 3 1 -1)T (transponiert)   b= (1 2 3 4)T    c=(1 5 -3 -11)T    d=(2 -3 2 1)T    e=(1 1 5 9)T

Vektoren von V = R4 Und U=[a,b,c]  und W=[d,e] Unterräume von V.

a) Bestimmen Sie die Dimesion der Unterräume U,W, U+W, U geschnitten W und U vereinigt W von V, indem Sie jeweils eine Basis angeben.

b) Geben Sie eine Basis des Faktorraums V/U an.

Wäre über Hilfe sehr dankbar.

Zu a) weiß ich ja, dass man für die Dimension lediglich die Anzahl der Basisvektoren ausrechnen muss. Aber wie?
Zu b) weiß ich nix.

Vielen lieben Dank!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Dimension von Unterräumen: Antwort zu a)
Status: (Antwort) fertig Status 
Datum: 13:06 Fr 26.11.2004
Autor: Alexx

Zuerst berechnen wir die Dimension von U. Dazu schreiben wir die Vektoren, die U erzeugen, in eine Matrix und wenden die Gauss-Elimination an:

1  3  1 -1   (a)    1  3  1 -1   (a)            1  3  1 -1  (a)
1  2  3  4   (b)    0  1 -2 -5   (a)-(b)=:(d)   0  1 -2 -5  (d)
1  5 -3 -11  (c)    0  2 -4 -10  (c)-(a)=:(e)   0  0  0  0  (e)-2(d)

Die Anzahl Nicht-Nullzeilen liefert nun die Dimension, also dim U = 2.
Das gleiche machen wir für W und erhalten dim W = 2.
Dann schreiben wir alle fünf Vektoren in eine Matrix und erhalten mit der gleichen Methode dim U+W = 3.

Die Formel [mm] dim U + dim W = dim U+W + dim U \cap W [/mm] liefert nun direkt [mm] dim U \cap W = 1 [/mm].

Dann gilt weder [mm] U \subset W [/mm] noch [mm] W \subset U [/mm] und somit ist [mm] U \cup W [/mm] kein Unterraum und hat somit keine Dimension.

Die Zeilen ungleich Null, die bei der Gauss-Elimination jeweils entstanden sind, bilden die gesuchten Basen.

Bezug
        
Bezug
Dimension von Unterräumen: zu b)
Status: (Antwort) fertig Status 
Datum: 03:00 Sa 27.11.2004
Autor: p0rcelain

Ergänze die Basis von U mit der Standartbasis [mm] B=\{e_{1},...,e_{n}\}, [/mm] wobei [mm] e_{i}=(0,...,1,0,..0) [/mm] und schreibe Vektoren in Form einer Matrix:
[mm] \pmat{ 1 & 3 & 1 & -1 \\ 1 & 2 & 3 & 4 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1} [/mm]
Wende die Gauss-Elimination an, um  die Matrix auszurechnen.  Dann solltest du am Ende sowas bekommen, wenn ich eben keinen Fehler gemacht habe:
[mm] \pmat{ 1 & 3 & 1 & -1 \\ 0 & -1 & 2 & 5 \\ 0 & 0 & -7 & -14 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0} [/mm]
Daraus folgt, dass Basis von V/U besteht aus vier Vektoren [mm] \{a,b,e_{1},e_{2}\} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]