matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieDiophantische Gleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Zahlentheorie" - Diophantische Gleichungen
Diophantische Gleichungen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diophantische Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:27 So 08.01.2012
Autor: kitty89

Aufgabe
Aufgabe 1 (Diophantische Gleichungen)
Ermitteln Sie jeweils die ganzzahligen Lösungen der folgenden Diophantischen Gleichungen.
a) 9x²- 4y² = 45
b)  x²- 49y²=154
c)-3x + xy -4y = 44
d)  xy + 6x + 7y = 52

Hallo,

ich habe bereits sehr viel Zeit investiert um diese Aufgaben zu lösen. Leider ist mir eine Lösung nur bei der ersten Aufgabe gelungen, mit x1=45 und x2= -90.Könntet ihr mir bitte sagen, ob das korrekt ist? Die Lösung von Aufg. b) ist vermutlich  falsch, mit x1= 154 und x2= -7546. Oder ? Bei den anderen Aufgaben weiß ich nicht wie ich vorgehen soll.Ich wäre euch sehr dankbar, wenn ihr mir helfen könntet.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Diophantische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:24 So 08.01.2012
Autor: Diophant

Hallo Sarah,

trotz meines Nicknames: ein Experte bin ich nicht auf diesem Gebiet. Aber meinen Nickname habe ich mal ausgewählt, weil dieser ominöse Diophant, von dem man recht wenig weiß, relativ unkonventionell gewesen sein muss und viele Tricks auf Lager hatte. Zwar soll man heutzutage durchaus die Erkenntnisse der Zahlentheorie auf die Lösungen solcher Diophantischer Gleichungen anwenden, aber Tricks sind trotzdem nicht verboten.

So könntets du bei der a) mal versuchen, die linke Seite zu faktorisieren. Dann bist du schon so gut wie fertig...

Desgleichen bei Aufgabe b).  Auch bei c) und d) müsste es - nach geeigneter Ergänzung - einen Weg über faktorsieren geben, aber das könntest du ja zunächst selbst mal versuchen (ich bin bei b) und c) spontan auch noch nicht weitergekommen).

Gruß, Diophant

Bezug
        
Bezug
Diophantische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:37 So 08.01.2012
Autor: hippias

Die erste Gleichung wuerde ich wohl einfach faktorisieren, wobei ich gleich [mm] $x,y\geq [/mm] 0$ voraussetze:
$45= (3x+2y)(3x-2y)$. Nun muss einer der Faktoren durch $3$ teilbar sein, und somit muss $y$ durch $3$ teilbar sein. Sei $y= 3y'$. Einsetzen und kuerzen liefert $5= (x+2y')(x-2y')$. Nun folgt, dass $x+2y'$ und $x-2y'$ gleiches Vorzeichen haben, sodass wegen [mm] $x,y'\geq [/mm] 0$ auch [mm] $x+2y'\geq [/mm] 0$ ist und damit auch [mm] $x-2y'\geq [/mm] 0$.
Da $5$ wohl prim ist, folgt 1. $x+2y'= 1$ und $x-2y'= 5$ oder 2. $x+2y'= 5$ und $x-2y'= 1$.

Der erste Fall scheidet aus, wegen [mm] $x\geq [/mm] 0$ und im zweiten berechnet man $y'= 1$, also $y= 3$ und $x= 3$. Loesungsmenge [mm] $\{(\pm 3, \pm1)\}$. [/mm]    

Die zweite Gleichung duerfte aehnlich zu loesen sein.

Bezug
        
Bezug
Diophantische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 So 08.01.2012
Autor: abakus


> Aufgabe 1 (Diophantische Gleichungen)
> Ermitteln Sie jeweils die ganzzahligen Lösungen der
> folgenden Diophantischen Gleichungen.
> a) 9x²- 4y² = 45
> b) x²- 49y²=154
> c)-3x + xy -4y = 44
> d) xy + 6x + 7y = 52
> Hallo,
>
> ich habe bereits sehr viel Zeit investiert um diese
> Aufgaben zu lösen. Leider ist mir eine Lösung nur bei der
> ersten Aufgabe gelungen, mit x1=45 und x2= -90.Könntet ihr
> mir bitte sagen, ob das korrekt ist?

Warum fragst du????
Setze dein x=45 ein und rechne damit y aus. Wenn dein y ganzzahlig ist, hast du eine Lösung gefunden. Wenn nicht- dann gehört x=45 nicht zu einem Lösungspaar.
Du solltest, wie schon vorgeschlagen- faktorisieren.
Aus [mm] $9x^2 -4y^2=45$ [/mm] folgt (3x-2y)(3x+2y)=45
Die Zahl 45 lässt sich genau auf folgende Arten als Produkt zweier ganzer Zahlen erzeugen:
45*1
15*3
9*5
5*9
3*15
1*45
(-45)*(-1)
...
(-1)*(-45)
Teste alle 12 Möglichkeiten, indem du die zugehörigen Gleichungssysteme löst.
Möglichkeit 1: 3x-2y=45 und 3x+2y=1 (führt auf y=-22 und x=1/3, also keine ganzzahlige Lösung).
Die restliche 11 Fälle überlasse ich dir.

Der Versuch, c) zu faktorisieren, führt zunächst auf den Zwischenschritt
-3x+xy=x(-3+y)
Dummerweise lässt sich diese Ausklammerei nicht weiter fortsetzen, weil dahinter nur noch -4y steht. Würde dort auch noch eine 12 stehen, könnte man aus 12-4y ebenfalls den Faktor (-3+y) ausklammern und würde -4(-3+y) erhalten.
Wenn wir also eine 12 brauchen - dann holen wir sie uns doch einfach!
Aus -3x + xy -4y = 44 erhalten wir durch beidseitige Addition von 12
-3x+xy +12-4y=56 , und im linken Term können wir zweimal (-3+x) ausklammern:
x(-3+y) -4(-3+y)=56
Wir klammern den gemeinsamen Faktor (-3+y) aus:
(-3+y)(x-4)=56.
Nun ist 56 z.B.
56*1
28*2
14*4
8*7
(außerdem umgekehrte Reihenfolge beider Faktoren; außerdem entsprechende negative Faktoren).
Das gibt 16 mögliche Lösungspaare (x;y).
Gruß Abakus


> Die Lösung von Aufg.
> b) ist vermutlich  falsch, mit x1= 154 und x2= -7546. Oder
> ? Bei den anderen Aufgaben weiß ich nicht wie ich vorgehen
> soll.Ich wäre euch sehr dankbar, wenn ihr mir helfen
> könntet.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]