matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieDirichlet
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Zahlentheorie" - Dirichlet
Dirichlet < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dirichlet: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:18 Mo 08.11.2010
Autor: Arcesius


Hallo

Ich habe aus einer anderen Aufgabe gegeben, dass:

[mm]\tilde{a_{n}} := #\lbrace I \subset \mathbb{Z}_{K} \text{ ideal }: N(I) \le n \rbrace \le n(1+log(n))^{\left[K:\mathbb{Q}\right]-1}[/mm]

Nun definiert man [mm]a_{n} := #\lbrace I \subset \mathbb{Z}_{K} \text{ ideal }: N(I) = n \rbrace[/mm]

Zu zeigen: [mm]\zeta_{K}(s) = \sum\limits_{n\ge 1}{\frac{a_{n}}{n^{s}}}[/mm] konvergiert.

Nun, dazu muss ich nur die [mm]a_{i}[/mm] gut abschätzen. Denn sind sie beschränkt, so konvergiert die Reihe. Jedoch bin ich nicht ganz überzeugt, dass dies überhaupt der Fall ist. Ich kann ja schreiben: (setze [mm]d := \left[K:\mathbb{Q}\right][/mm])

[mm]a_{n} = \tilde{a_{n}}-\tilde{a_{n-1}} \le n(1+log(n))^{d-1} - (n-1)(1+log(n-1))^{d-1}[/mm]

Ich habe nun versucht, dies so umzuformen, dass ich was gescheites abschätzen kann... jedoch gelingt es mir nicht. Wird es überhaupt gehen mit diesem Ansatz?

Ich bitte um Hilfe.. :)

Grüsse, Arcesius

        
Bezug
Dirichlet: Antwort
Status: (Antwort) fertig Status 
Datum: 10:30 Di 09.11.2010
Autor: felixf

Moin Arcesius!

> Ich habe aus einer anderen Aufgabe gegeben, dass:
>  
> [mm]\tilde{a_{n}} := #\lbrace I \subset \mathbb{Z}_{K} \text{ ideal }: N(I) \le n \rbrace \le n(1+log(n))^{\left[K:\mathbb{Q}\right]-1}[/mm]
>  
> Nun definiert man [mm]a_{n} := #\lbrace I \subset \mathbb{Z}_{K} \text{ ideal }: N(I) = n \rbrace[/mm]
>  
> Zu zeigen: [mm]\zeta_{K}(s) = \sum\limits_{n\ge 1}{\frac{a_{n}}{n^{s}}}[/mm]
> konvergiert.

Hier ist vermutlich [mm] $\Re [/mm] s > 1$?

> Nun, dazu muss ich nur die [mm]a_{i}[/mm] gut abschätzen. Denn sind
> sie beschränkt, so konvergiert die Reihe. Jedoch bin ich
> nicht ganz überzeugt, dass dies überhaupt der Fall ist.

Ich denke nicht, dass dies der Fall ist. Der [mm] $\log(n)$-Term [/mm] versaut alles :-)

> Ich kann ja schreiben: (setze [mm]d := \left[K:\mathbb{Q}\right][/mm])
>  
> [mm]a_{n} = \tilde{a_{n}}-\tilde{a_{n-1}} \le n(1+log(n))^{d-1} - (n-1)(1+log(n-1))^{d-1}[/mm]

Das ist falsch. Es ist zwar [mm] $a_n [/mm] = [mm] \tilde{a}_n [/mm] - [mm] \tilde{a}_{n-1}$, [/mm] jedoch kannst du nur [mm] $\tilde{a}_n$ [/mm] nach oben Abschaetzen, jedoch nicht [mm] $\tilde{a}_{n-1}$ [/mm] nach Unten (ausser durch $0$, aber das bringt dir nichts...)!

> Ich habe nun versucht, dies so umzuformen, dass ich was
> gescheites abschätzen kann... jedoch gelingt es mir nicht.
> Wird es überhaupt gehen mit diesem Ansatz?

Nun, offenbar reicht fuer die Konvergenz das Wissen ueber die [mm] $\tilde{a}_n$, [/mm] oder genauer gesagt, ueber [mm] $\limsup_{n\to\infty} \frac{\log \tilde{a}_n}{\log n}; [/mm] siehe etwa []hier.

Wie das genau geht kann ich dir grad nicht sagen, da muss ich noch etwas drueber nachdenken.
(Und erstmal sollte ich schlafen gehen ;-) )

LG Felix


Bezug
        
Bezug
Dirichlet: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Mi 10.11.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]