matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenDirichlet Problem: Ableitung 0
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Partielle Differentialgleichungen" - Dirichlet Problem: Ableitung 0
Dirichlet Problem: Ableitung 0 < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dirichlet Problem: Ableitung 0: nach t
Status: (Frage) überfällig Status 
Datum: 20:32 Di 23.04.2013
Autor: pablovschby

Aufgabe
Man zeige, dass

a) Für die Wellengleichung ist das Dirichlet-Problem auf [0,l] [mm] f_d :=\frac{1}{2}*(\integral_{0}^{l}{ c^{-2} *(\partial_t u )^2 dx} [/mm] + [mm] \integral_{0}^{1}{ (\partial_x u )^2 dx}) [/mm] eine Grösse, die bezgl. Zeit erhalten bleibt.

b) Dasselbe für die Wellengleichung auf [0,l] mit Robin Randwerten gilt mit
[mm] f_r:= \frac{1}{2}*(\integral_{0}^{l}{ c^{-2} *(\partial_t u )^2 dx} [/mm] + [mm] \integral_{0}^{1}{ (\partial_x u )^2 dx}) +\frac{1}{2}a_l *u(l,t)^2 [/mm] + [mm] \frac{1}{2}*a_0*u(0,t)^2 [/mm]

a)
Also ich muss wohl [mm] f_d [/mm] nach t ableiten und zeigen, dass diese Ableitung immer 0 ist. Dann bleibt diese Grösse bezgl. Zeit erhalten... . Nach Einsetzen der WGL und partieller Integration erhalte ich [mm] \partial_t f_d [/mm] = [mm] \frac{1}{2} [/mm] ( [mm] \partial_x [/mm] u(l,t)* [mm] \partial_t u(l,t)-\partial_x [/mm] u(0.t) * [mm] \partial_t [/mm] u(0,t) )

Ich verstehe aber nicht, warum das 0 sein soll? Dirichlet Problem heisst hier doch nur, dass die Randwerte=0 sind, ja?


b)
Hier gilt [mm] \partial_x u(l,t)+a_l [/mm] (l,t)=0 sowie [mm] \partial_x u(0,t)-a_0*u(0,t)=0 [/mm]

Also habe ich dann [mm] f_r [/mm] nach t abgeleitet, umgeformt und folgendes erhalten:

[mm] \partial_t f_r [/mm] = [mm] \frac{1}{2}*(a_l *u(l,t)*(u(l,t)-\partial_t *u(l,t))+a_0 *u(0,t)*(u(0,t)-\partial_t*u(0,t)) [/mm] )

Warum kommt hier jeweils 0 heraus?

Grüsse




        
Bezug
Dirichlet Problem: Ableitung 0: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Do 25.04.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]