matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete MathematikDiskrete Mathe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Diskrete Mathematik" - Diskrete Mathe
Diskrete Mathe < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diskrete Mathe: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:02 Fr 28.04.2006
Autor: Sunny85

Aufgabe
Prüfe, dass die Anzahl der Teilmengen von [n], das eine ungerade Anzahl an Elementen hat, [mm] 2^{n-1} [/mm] ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Wie kann ich das am besten zeigen? Ich hatte bereits eine ähnliche Aufgabe, da war die bedeingung, dass je zwei Teilmengen von [n] mindestens ein Element gemeinsam haben. Dabei war die Antwort auch [mm] 2^{n-1} [/mm] und es wurde damit argumentiert, dass man für ungerade n alle Teilmengen mit Mächtigkeit [mm] \ge [/mm] n+1/2 auswählt. kann ich diese Option hierbeiauch verwenden?

        
Bezug
Diskrete Mathe: Antwort
Status: (Antwort) fertig Status 
Datum: 11:43 Fr 28.04.2006
Autor: DirkG

Dieselbe Anzahl heißt nicht dieselbe Argumentation... :-)

Wir spalten von unserer Menge [mm] $M_n=\{1,2,\cdots,n\}$ [/mm] einfach mal ein Element ab, d.h. [mm] $M_n=M_{n-1}\cup\{n\}$, [/mm] und betrachten jetzt alle ungeradzahligen Teilmengen $T$ von [mm] $M_n$. [/mm] Da gibt es zwei Fälle:

1.Fall [mm] $n\in [/mm] T$: Dann ist [mm] $T\cap M_{n-1}$ [/mm] eine geradanzahlige Teilmenge von [mm] $M_{n-1}$. [/mm]

2.Fall [mm] $n\not\in [/mm] T$: Dann ist [mm] $T\cap M_{n-1}=T$ [/mm] eine ungeradanzahlige Teilmenge von [mm] $M_{n-1}$. [/mm]

Beide Fälle zusammengenommen entspricht dann die Anzahl solcher $T$ genau der Anzahl aller Teilmengen von [mm] $M_{n-1}$, [/mm] und das sind ja [mm] $2^{n-1}$. [/mm]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 1h 46m 7. HJKweseleit
UAnaR1FolgReih/Wert einer Reihe
Status vor 2h 32m 2. fred97
UAnaR1/Riemann Summe
Status vor 5h 18m 11. TS85
MaßTheo/Sigma-Algebra = P(X)
Status vor 9h 38m 2. Infinit
SStatHypo/Bedeutung Signifikanzniveau
Status vor 10h 28m 4. fred97
UAnaR1FolgReih/Absolute Konvergenz
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]