matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenDivergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Divergenz
Divergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Divergenz: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:16 Sa 20.03.2010
Autor: lubalu

Aufgabe
Beweisen oder widerlegen Sie die Konvergenz der Reihe
[mm] \summe_{n=0}^{\infty} (\bruch{1}{k^2} [/mm] - [mm] \bruch{1}{k}) [/mm]

Hallo.

In meiner Lösung steht:
Widerspruchsbeweis
Wir nehmen an, die Reihe sei konvergent. Da die Reihe [mm] \summe_{n=0}^{\infty} (\bruch{1}{k^2}) [/mm] konvergiert,müsste auch [mm] \summe_{n=0}^{\infty} (\bruch{1}{k^2} [/mm] - [mm] (\bruch{1}{k^2} [/mm] - [mm] \bruch{1}{k})) [/mm] = [mm] \summe_{n=0}^{\infty} (\bruch{1}{k}) [/mm] konvergieren. Doch die harmonische Reihe ist divergent.

Meine Frage nun: Wie komme ich darauf,dass ich diese Differenz betrachten muss? Gibt's auch eine andere Möglichkit?

        
Bezug
Divergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 11:50 Sa 20.03.2010
Autor: angela.h.b.


> Beweisen oder widerlegen Sie die Konvergenz der Reihe
>  [mm]\summe_{n=0}^{\infty} (\bruch{1}{k^2}[/mm] - [mm]\bruch{1}{k})[/mm]
>  Hallo.
>  
> In meiner Lösung steht:
>  Widerspruchsbeweis
>  Wir nehmen an, die Reihe sei konvergent. Da die Reihe
> [mm]\summe_{n=0}^{\infty} (\bruch{1}{k^2})[/mm] konvergiert,müsste
> auch [mm]\summe_{n=0}^{\infty} (\bruch{1}{k^2}[/mm] -
> [mm](\bruch{1}{k^2}[/mm] - [mm]\bruch{1}{k}))[/mm] = [mm]\summe_{n=0}^{\infty} (\bruch{1}{k})[/mm]
> konvergieren. Doch die harmonische Reihe ist divergent.
>  
> Meine Frage nun: Wie komme ich darauf,dass ich diese
> Differenz betrachten muss?

Hallo,

"wie komme ich darauf?" ist immer schwierig...
Je besser man bescheid weiß, und je mehr man geübt hat, umso leichter kommt man auf eine gute Idee.
Ein Rezept gibt's nicht.
Wenn ich keine Idee hatte, hab' ich immer meine Vorlesungsmitschrift durchkämmt nach Sätzen, die passen könnten.

Ich erklär' Dir also lieber, warum der Beweis funktioniert:
Der Vorteil von Übungsaufgaben ist ja, daß sie auf das abgestimmt sind, was dran war.
Aus der Vorlesung weißt Du, daß für zwei konvergente Reihen [mm] \summe a_n [/mm] und [mm] \summe b_n [/mm] die Summe [mm] \summe (a_n+b_n) [/mm] ebenfalls konvergent ist, dh.

[mm] \summe a_n [/mm] und [mm] \summe b_n [/mm] konvergent ==>  [mm] \summe (a_n+b_n) [/mm] konvergent.


Dein Widerspruchsbeweis läuft nun vom Prinzip her so, daß man annimmt, daß [mm] \summe (a_n+b_n) [/mm] konvergiert.
Man weiß, daß [mm] \summe a_n [/mm] konvergiert, also auch [mm] \summe (-a_n) [/mm]

Aufgrund des oben aufgeschriebenen Satzes konvergiert [mm] \summe (a_n+b_n)+\summe (-a_n) =\summe b_n. [/mm]

Das ist ein Widerspruch, denn [mm] \summe b_n [/mm] konvergiert bekanntlich nicht.

Also ist die Annahme, daß [mm] \summe (a_n+b_n) [/mm] konvergiert, falsch.

> Gibt's auch eine andere
> Möglichkit?

Bestimmt. Nach Rom führen ja auch mehrere Wege. Was schwebt Dir vor?

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]