matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenDivergenz Integralsatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Divergenz Integralsatz
Divergenz Integralsatz < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Divergenz Integralsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:07 So 27.04.2014
Autor: racy90

Hallo

Ich habe folgendes Vektorfeld gegebene und die Oberfläche S der Einheitskugel .

Nun soll ich mittels gegeigneten Integralsatz das Oberflächenintegral [mm] \integral_{}^{}\integral_{S}^{}{V dO} [/mm] bestimmen.


Ich habe mir gedacht ich berechne es mit den Integralsatz von Gauss wo ich die div V benötige

[mm] v=\vektor{x \\ y \\ z} [/mm]

div v = 3

[mm] \integral_{}^{}\integral_{}^{}\integral_{}^{}{3 dxdydz} [/mm]

Aber welche Grenzen setzte ich ein

für z hätte ich 0  bis 1  ; für y und x hätte ich jeweils 0 bis [mm] 2\pi [/mm] gewählt

        
Bezug
Divergenz Integralsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 14:14 So 27.04.2014
Autor: fred97


> Hallo
>  
> Ich habe folgendes Vektorfeld gegebene und die Oberfläche
> S der Einheitskugel .
>  
> Nun soll ich mittels gegeigneten Integralsatz das
> Oberflächenintegral [mm]\integral_{}^{}\integral_{S}^{}{V dO}[/mm]
> bestimmen.
>  
>
> Ich habe mir gedacht ich berechne es mit den Integralsatz
> von Gauss wo ich die div V benötige
>  
> [mm]v=\vektor{x \\ y \\ z}[/mm]
>  
> div v = 3
>  
> [mm]\integral_{}^{}\integral_{}^{}\integral_{}^{}{3 dxdydz}[/mm]
>  
> Aber welche Grenzen setzte ich ein
>  
> für z hätte ich 0  bis 1  ; für y und x hätte ich
> jeweils 0 bis [mm]2\pi[/mm] gewählt

Nein. Dann würdest Du ja über einen Quader integrieren !

Kugelkoordinaten !!

FRED


Bezug
                
Bezug
Divergenz Integralsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:42 So 27.04.2014
Autor: racy90

Dann denke ich das es so richtig ist:

[mm] \integral_{0}^{1}\integral_{0}^{\pi}\integral_{0}^{2\pi}{3sin(\beta) d\phi d\beta dr} [/mm]

Bezug
                        
Bezug
Divergenz Integralsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 08:31 Mo 28.04.2014
Autor: fred97


> Dann denke ich das es so richtig ist:
>  
> [mm]\integral_{0}^{1}\integral_{0}^{\pi}\integral_{0}^{2\pi}{3sin(\beta) d\phi d\beta dr}[/mm]

Nein, da fehlt noch ein [mm] r^2: [/mm]

[mm]\integral_{0}^{1}\integral_{0}^{\pi}\integral_{0}^{2\pi}{3sin(\beta)*r^2 d\phi d\beta dr}[/mm]

FRED

>  


Bezug
                                
Bezug
Divergenz Integralsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:16 Di 29.04.2014
Autor: racy90

Aber wenn ich nun als erstes das innnerste Integral löse nach [mm] d\phi [/mm] kommt ja gleich 0 heraus oder übersehe ich da etwas

Bezug
                                        
Bezug
Divergenz Integralsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 11:46 Di 29.04.2014
Autor: leduart

Hallo
[mm] \integral_{a}^{b}{C*dx}=C*(b-a) [/mm]
kannst du das auf [mm] \phi [/mm] anwenden?
Gruß leduart

Bezug
                                                
Bezug
Divergenz Integralsatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:56 Di 29.04.2014
Autor: racy90

Stimmd. Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]