matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenDivergenz einer Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Divergenz einer Funktion
Divergenz einer Funktion < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Divergenz einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:47 Mo 13.10.2008
Autor: alexwie

Aufgabe
Sei e [mm] \in [/mm] V = [mm] \IR^{3} [/mm] mit [mm] \parallel [/mm] e [mm] \parallel [/mm] = 1. Für ein fest gewähltes C [mm] \in \IR [/mm] gelte auf U = [mm] \IR^{3} [/mm] \ [mm] \IR*e [/mm] für das Vektorfeld B(p) = C* [mm] \bruch{e \times p}{\parallel e \times p \parallel ^2}. [/mm]

Zeigen sie dass div(B)=0 und rot(B)=0

Hallo! um dieses Beispiel zu lösen hab ich zuerst die Divergenz als
div(B) = C*(<grad( [mm] \bruch{1}{\parallel e \times p \parallel ^2}), [/mm] e [mm] \times [/mm] p >+ [mm] \bruch{div(e \times p)}{\paralell e \times p \paralell ^2}) [/mm] geschrieben. Nun bin ich mir nicht sicher wie ich weiter machen soll da ja über die Norm keine konkreten aussagen gemacht worden sind, ich also nicht von der euklidischen ausgehen kann und dann nicht weiß wie ich den gradienten von [mm] \bruch{1}{\parallel e \times p \parallel ^2} [/mm] berechne bzw die Divergenz von e [mm] \times [/mm] p.
Wär dankbar für jede Hilfe

Lg Alex

        
Bezug
Divergenz einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:30 Mo 13.10.2008
Autor: rainerS

Hallo!

> Sei e [mm]\in[/mm] V = [mm]\IR^{3}[/mm] mit [mm]\parallel[/mm] e [mm]\parallel[/mm] = 1. Für
> ein fest gewähltes C [mm]\in \IR[/mm] gelte auf U = [mm]\IR^{3}[/mm] \ [mm]\IR*e[/mm]
> für das Vektorfeld B(p) = C* [mm]\bruch{e \times p}{\parallel e \times p \parallel ^2}.[/mm]
>  
> Zeigen sie dass div(B)=0 und rot(B)=0
>  
> Hallo! um dieses Beispiel zu lösen hab ich zuerst die
> Divergenz als
>  div(B) = C*(<grad( [mm]\bruch{1}{\parallel e \times p \parallel ^2}),[/mm]
> e [mm]\times[/mm] p >+ [mm]\bruch{div(e \times p)}{\paralell e \times p \paralell ^2})[/mm]
> geschrieben. Nun bin ich mir nicht sicher wie ich weiter
> machen soll da ja über die Norm keine konkreten aussagen
> gemacht worden sind, ich also nicht von der euklidischen
> ausgehen kann und dann nicht weiß wie ich den gradienten
> von [mm]\bruch{1}{\parallel e \times p \parallel ^2}[/mm] berechne
> bzw die Divergenz von e [mm]\times[/mm] p.

Für die Divergenz brauchst du die Norm ja nicht. Setze einfach die Definition des Kreuzproduktes und der Divergenz in kartesischen Koordinaten ein, dann siehst du, dass die Divergenz von [mm] $e\times [/mm] p$ verschwindet.

Was die Norm betrifft, so würde ich an deiner Stelle mit der euklidischen Norm rechnen. Wenn du das nicht willst, bedenke, dass wegen der Rotationsinvarianz jede Norm die Form

[mm] \|x\| = f () [/mm]

mit einer skalaren Funktion f haben muss, also eine Funktion der euklidischen Norm ist. Daraus ergibt sich, dass der Gradient eine Linearkombination von $e$ und $p$ ist, also in der e-p-Ebene liegt. (Rechne es nach, wenn du unsicher bist, warum!) Da [mm] $e\times [/mm] p$ senkrecht zu dieser Ebene steht, ist dein Skalarprodukt auch 0.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]