matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenDivergenz einer Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Divergenz einer Reihe
Divergenz einer Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Divergenz einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:39 Di 21.12.2010
Autor: T_sleeper

Aufgabe
Stimmt es, dass die Reihe für [mm] \sum_{n=0}^{\infty}\frac{x^{n}}{\sqrt{n+1}} [/mm] |x|>1 divergiert?

Hallo,

also ich sollte die Reihe ursprünglich auf Konvergenz untersuchen und jetzt hänge ich bei [mm] |x|>1\mbox{ fest}. [/mm] Meiner Meinung nach müsste sie da divergieren. Ich konnte es aber noch nicht ausreichend begründen. Wenn man [mm] betrachtet:|\frac{a_{n+1}}{a_{n}}|=|\frac{x\sqrt{n+1}}{\sqrt{n+2}}|, [/mm] dann müsste das ja ab irgendeinem Index N für alle [mm] n\geq [/mm] N größer gleich eins sein.

Aber das kann ich so nicht sehen. Ist die Aussage allgemein schon falsch? Was ist dann mit der Reihe los für |x|>1? Ab |x|>2 wird sie sicherlich divergieren, weill wir dann gar keine Nullfolge mehr haben, die in der Reihe steht.

        
Bezug
Divergenz einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 00:49 Di 21.12.2010
Autor: MathePower

Hallo T_sleeper,

> Stimmt es, dass die Reihe für
> [mm]\sum_{n=0}^{\infty}\frac{x^{n}}{\sqrt{n+1}}[/mm] |x|>1
> divergiert?
>  Hallo,
>  
> also ich sollte die Reihe ursprünglich auf Konvergenz
> untersuchen und jetzt hänge ich bei [mm]|x|>1\mbox{ fest}.[/mm]
> Meiner Meinung nach müsste sie da divergieren. Ich konnte
> es aber noch nicht ausreichend begründen. Wenn man
> [mm]betrachtet:|\frac{a_{n+1}}{a_{n}}|=|\frac{x\sqrt{n+1}}{\sqrt{n+2}}|,[/mm]
> dann müsste das ja ab irgendeinem Index N für alle [mm]n\geq[/mm]
> N größer gleich eins sein.


Die obige Reihe konvergiert nach dem Quotientenkriterium für

[mm]\vmat{x} < \limes_{n \to \infty}|\frac{\sqrt{n+2}}{\sqrt{n+1}}|[/mm]

Daraus erkennst Du, daß die Reihe für

[mm]\vmat{x} > \limes_{n \to \infty}|\frac{\sqrt{n+2}}{\sqrt{n+1}}|[/mm]

divergiert.


>  
> Aber das kann ich so nicht sehen. Ist die Aussage allgemein
> schon falsch? Was ist dann mit der Reihe los für |x|>1? Ab
> |x|>2 wird sie sicherlich divergieren, weill wir dann gar
> keine Nullfolge mehr haben, die in der Reihe steht.


Gruss
MathePower

Bezug
        
Bezug
Divergenz einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 07:39 Di 21.12.2010
Autor: fred97


> Stimmt es, dass die Reihe für
> [mm]\sum_{n=0}^{\infty}\frac{x^{n}}{\sqrt{n+1}}[/mm] |x|>1
> divergiert?
>  Hallo,
>  
> also ich sollte die Reihe ursprünglich auf Konvergenz
> untersuchen und jetzt hänge ich bei [mm]|x|>1\mbox{ fest}.[/mm]
> Meiner Meinung nach müsste sie da divergieren. Ich konnte
> es aber noch nicht ausreichend begründen. Wenn man
> [mm]betrachtet:|\frac{a_{n+1}}{a_{n}}|=|\frac{x\sqrt{n+1}}{\sqrt{n+2}}|,[/mm]
> dann müsste das ja ab irgendeinem Index N für alle [mm]n\geq[/mm]
> N größer gleich eins sein.
>  
> Aber das kann ich so nicht sehen. Ist die Aussage allgemein
> schon falsch? Was ist dann mit der Reihe los für |x|>1? Ab
> |x|>2 wird sie sicherlich divergieren, weill wir dann gar
> keine Nullfolge mehr haben, die in der Reihe steht.

Ergänzend:

die Reihe [mm]\sum_{n=0}^{\infty}\frac{x^{n}}{\sqrt{n+1}}[/mm]  ist auch in x=1 divergent (warum ?)

Im Punkt x=-1 ist die Reihe konvergent (warum ?)

FRED


Bezug
                
Bezug
Divergenz einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:02 Sa 25.12.2010
Autor: Zuggel

Ich hoffe, ich darf versuchen das zu beantworten!

> die Reihe [mm]\sum_{n=0}^{\infty}\frac{x^{n}}{\sqrt{n+1}}[/mm]  ist
> auch in x=1 divergent (warum ?)

Stichwort: Harmonische Reihe?

>  
> Im Punkt x=-1 ist die Reihe konvergent (warum ?)

Stichwort: Leibniz Kriterium?

Danke
lg

Bezug
                        
Bezug
Divergenz einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:51 Sa 25.12.2010
Autor: felixf

Moin,

> Ich hoffe, ich darf versuchen das zu beantworten!

ja, das darfst du :)

> > die Reihe [mm]\sum_{n=0}^{\infty}\frac{x^{n}}{\sqrt{n+1}}[/mm]  ist
> > auch in x=1 divergent (warum ?)
>  
> Stichwort: Harmonische Reihe?

...zusammen mit dem Minorantenkriterium, ja.

> >  

> > Im Punkt x=-1 ist die Reihe konvergent (warum ?)
>  
> Stichwort: Leibniz Kriterium?

[ok]

LG Felix


Bezug
                                
Bezug
Divergenz einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:22 Sa 25.12.2010
Autor: Zuggel


>  >  
> > Stichwort: Harmonische Reihe?
>  
> ...zusammen mit dem Minorantenkriterium, ja.
>  

Entschuldige bitte, ich studiere auf ital. und mir sind die Fachausdrücke auf dt nicht alle geläufig. Was ist denn dieses Minorantenkriterium genau? Ich vermute einmal, dass ich es bereits anwende, sonst wäre ich wohl nicht auf die Lösung gekommen :-)


Bezug
                                        
Bezug
Divergenz einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:25 Sa 25.12.2010
Autor: Gonozal_IX

Huhu,

das Minorantenkriterium wirst du, wie schon vermutet, vermutlich bereits anwenden.

Da du die Reihe nach unten durch eine kleinere Reihe abschätzt, die trotzdem divergiert, weißt du ja, dass deine Reihe auch divergiert.

Diese kleinere Reihe heisst dann "Minorante".

Umgekehrt, also wenn du eine grössere Reihe finden würdest, die konvergiert, wäre es eine "Majorante".

MFG,
Gono.

Bezug
                                                
Bezug
Divergenz einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:36 Mo 27.12.2010
Autor: Zuggel

Perfekt, Danke :)!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]