matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenDivergenz und Rotation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Divergenz und Rotation
Divergenz und Rotation < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Divergenz und Rotation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:35 Di 16.06.2009
Autor: SEBBI001

Aufgabe
Es sind die Vektorfelder v, n: [mm] \IR^3 [/mm] \ {0} [mm] \to \IR^3 [/mm] durch v(x) = x und n(x) = [mm] \bruch{x}{||x||} [/mm] gegeben. Berechnen Sie Divergenz und Rotation dieser Vektorfelder

Die Berechnungformeln für div und rot hab ich verstanden. Nur weiß ich nicht wie ich die hier anwenden soll. Wir sind ja im 3-dim. Raum, aber in den Funktionsvorschriften ist nur von x die Rede. Muss ich x als Vektor mit den Komponenten [mm] (x_1, x_2, x_3) [/mm] auffassen? Kann ich hier dann die Norm als [mm] \wurzel{x_1^2 + x_2^2 + x_3^2} [/mm] darstellen, so dass ich den Bruch ableiten kann? Danke

        
Bezug
Divergenz und Rotation: Antwort
Status: (Antwort) fertig Status 
Datum: 15:42 Di 16.06.2009
Autor: weightgainer

Frage 1: Ja, x ist ein Vektor, wie dir die Funktionsvorschrift auch sagt, denn die Definitionsmenge ist [mm] \IR^3 \backslash \{0\}, [/mm] wobei auch die 0 hier den Nullvektor bezeichnet.

Frage 2: [mm] \parallel x\parallel [/mm] muss nicht notwendigerweise die von dir genannte "Standardnorm" sein, aber es könnte. Wenn du nichts anderes weißt, dann nimm die. Eine "echte" Antwort kann dir aber nur der geben, der dir die Aufgabe gestellt hat.



Bezug
                
Bezug
Divergenz und Rotation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:48 Di 16.06.2009
Autor: SEBBI001

Kann es sein, dass div(v) = 3 ist, denn die partiellen Ableitungen nach [mm] x_1, x_2 [/mm] und [mm] x_3 [/mm] sind ja jeweils 1 und für die Divergenz nimmt man ja die Summe davon.

Bezug
                        
Bezug
Divergenz und Rotation: Richtig verstanden
Status: (Antwort) fertig Status 
Datum: 16:07 Di 16.06.2009
Autor: weightgainer

Ja, das passt.

Bezug
                                
Bezug
Divergenz und Rotation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:22 Do 18.06.2009
Autor: SEBBI001

Aber wie mache ich das jetzt mit der anderen Funktion. Ich kann diese Norm ja umschreiben zu [mm] \wurzel{x_1^2 + x_2^2 + x_3^2}, [/mm] dann schaut mein Bruch so aus [mm] \bruch{x}{\wurzel(x_1^2 + x_2^2 + x_3^2)}. [/mm] Den muss ich ja jetzt nacheinander nach [mm] x_1 [/mm] usw. partiell ableiten. Aber was mach ich da mit dem x im Zähler? Da x ein Vektor ist, hängt der ja eigentlich auch von [mm] x_1 [/mm] ab, oder kann ich das als Konstante ansehen.

Bezug
                                        
Bezug
Divergenz und Rotation: Antwort
Status: (Antwort) fertig Status 
Datum: 13:46 Do 18.06.2009
Autor: XPatrickX

Hallo,

du musst hier wiederum x als Vektor sehen, wie im ersten Teil der Aufgabe. Ausgeschrieben steht dann da:

[mm] $\left( \bruch{x_1}{\wurzel{x_1^2 + x_2^2 + x_3^2}} \; , \; \bruch{x_2}{\wurzel{x_1^2 + x_2^2 + x_3^2}}\; , \; \bruch{x_3}{\wurzel{x_1^2 + x_2^2 + x_3^2}} \right) [/mm] $

Gruß Patrick

Bezug
        
Bezug
Divergenz und Rotation: Rotation von v
Status: (Frage) beantwortet Status 
Datum: 07:59 Di 23.06.2009
Autor: pestaiia

Hallo!
Ich habe dieselbe Aufgabe zu Lösen und wollte wissen, ob Rotation von v(x) der Nullvektor ist?

Bezug
                
Bezug
Divergenz und Rotation: Antwort
Status: (Antwort) fertig Status 
Datum: 08:20 Di 23.06.2009
Autor: angela.h.b.


> Hallo!
>  Ich habe dieselbe Aufgabe zu Lösen und wollte wissen, ob
> Rotation von v(x) der Nullvektor ist?

Hallo,

"wollte wissen" ist nicht gut, weil die Helfer dann allein rechnen müssen.

Wir wollen aber lieber stattdessen lieber sehen, was Du gerechnet hast - dies für die Zukunft.

rot [mm] \vec{v}=\vec{0}, [/mm] das stimmt.

Gruß v. Angela




Bezug
                
Bezug
Divergenz und Rotation: Divergenz von n(x)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 08:36 Di 23.06.2009
Autor: pestaiia

Und ist [mm] div\vec{n}=-\wurzel{x_1^2+x_2^2+x_3^2}? [/mm]

Bezug
                        
Bezug
Divergenz und Rotation: Antwort
Status: (Antwort) fertig Status 
Datum: 08:54 Di 23.06.2009
Autor: angela.h.b.


> Und ist [mm]div\vec{n}=-\wurzel{x_1^2+x_2^2+x_3^2}?[/mm]  

Hallo,

wie lauten Deine partiellen Ableitungen?

Gruß v. Angela


Bezug
                                
Bezug
Divergenz und Rotation: Partielle Ableitungen
Status: (Frage) beantwortet Status 
Datum: 10:50 Di 23.06.2009
Autor: pestaiia

Für die Ableitung nach [mm] x_1 [/mm] hab [mm] ich:-x_1^2/(x_1^2+x_2^2+x_3^2)^{1/2} [/mm]
für die Ableitungen nach [mm] x_2 [/mm] und [mm] x_3 [/mm] ändert sich nichts außerdas im Zähler [mm] x_2 [/mm] bzw. [mm] x_3 [/mm] steht.

Gruß
Pestaiia

Bezug
                                        
Bezug
Divergenz und Rotation: Antwort
Status: (Antwort) fertig Status 
Datum: 11:14 Di 23.06.2009
Autor: angela.h.b.


> Für die Ableitung nach [mm]x_1[/mm] hab
> [mm]ich:-x_1^2/(x_1^2+x_2^2+x_3^2)^{1/2}[/mm]
>  für die Ableitungen nach [mm]x_2[/mm] und [mm]x_3[/mm] ändert sich nichts
> außerdas im Zähler [mm]x_2[/mm] bzw. [mm]x_3[/mm] steht.
>  
> Gruß
>  Pestaiia

Hallo,

das ist ja nicht richtig.

Wenn Du [mm] f(x_1)=x_1/(x_1^2+x_2^2+x_3^2)^{1/2} [/mm] nach [mm] x_1 [/mm] ableitest, mußt Du das ja nach der Quotientenregel tun, und man erhält


[mm] f'(x_1)=\bruch{(x_1^2+x_2^2+x_3^2)^{1/2}*1-x_1*(\bruch{2x_1}{2}*(x_1^2+x_2^2+x_3^2)^{-1/2})}{(x_1^2+x_2^2+x_3^2)} [/mm]

[mm] =\bruch{(x_1^2+x_2^2+x_3^2)^{1/2}*1-x_1^2*(x_1^2+x_2^2+x_3^2)^{-1/2})}{(x_1^2+x_2^2+x_3^2)} [/mm]

[mm] =\bruch{(x_1^2+x_2^2+x_3^2)-x_1^2}{(x_1^2+x_2^2+x_3^2)^{3/2}} [/mm]

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]