matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik (Anwendungen)Division abhängiger ZV
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Statistik (Anwendungen)" - Division abhängiger ZV
Division abhängiger ZV < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Division abhängiger ZV: Einsatz bedingter Erw.werte
Status: (Frage) beantwortet Status 
Datum: 08:13 So 12.04.2015
Autor: wiwi2k

Aufgabe
Gegeben sind zwei Zufallsvariablen A und B. Über den Faktor X wird eine Abhängigkeit zwischen den Variablen vermittelt, das heißt sowohl A als auch B korrelieren mit X. Mit Ausnahme dieser Abhängigkeit sind die Variablen unabhängig.

Ermitteln Sie den Erwartungswert der Zufallsvariable Q = A/B.

Hallo zusammen,

bei der oben dargestellten Aufgabe bin ich mit sehr unsicher.
Normalerweise hätte ich gesagt:

E[Q] = E [mm] \left[ \frac{A}{B} \right]. [/mm]

Da beide Zufallsvariablen voneinander abhängig sind, ist die Nummer damit erledigt. Dann habe ich aber überlegt: Da die Abhängigkeit durch X vermittelt wird, wäre doch auch folgende Darstellung möglich:

E[Q] = [mm] \frac{E[A|X]}{E[B|X]}. [/mm]

Ist das richtig oder endet die Darstellung, wie ein Kumpel von mir meint, bei der ersten Form?

Viele Grüße und vielen lieben Dank,

Wiwi

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.




        
Bezug
Division abhängiger ZV: Antwort
Status: (Antwort) fertig Status 
Datum: 09:39 So 12.04.2015
Autor: Gonozal_IX

Hiho,

> Gegeben sind zwei Zufallsvariablen A und B. Über den
> Faktor X wird eine Abhängigkeit zwischen den Variablen
> vermittelt, das heißt sowohl A als auch B korrelieren mit
> X. Mit Ausnahme dieser Abhängigkeit sind die Variablen
> unabhängig.

Die Aufgabe ist irgendwie echt unmathematisch gestellt und macht meiner Meinung nach kaum Sinn bzw ist unverständlich.

Ich würde das bspw. so interpretieren, dass beide Zufallsvariablen den "Faktor X" enthalten, d.h. sich so schreiben lassen:

$A = [mm] X*\overline{A}, [/mm] B = [mm] X*\overline{B}$ [/mm] und [mm] \overline{A} [/mm] und [mm] \overline{B} [/mm] sind unabhängig

Die Aufgabe lässt sich also meiner Meinung nach ohne eine konkretere Aufgabenstellung nicht lösen....

> Da die Abhängigkeit durch X vermittelt wird, wäre doch auch
> folgende Darstellung möglich:
>  
> E[Q] = [mm]\frac{E[A|X]}{E[B|X]}.[/mm]

Das ist schon aus einfachen Überlegungen falsch: Links steht eine reelle Zahl und rechts eine Zufallsvariable.
Warum sollte die Gleichung also gelten? Was aber natürlich gilt, ist folgendes:

i) $E[Q] = [mm] E\left[E[Q|X\vee A]\right] [/mm] = [mm] E\left[AE[\bruch{1}{B}\bigg|X]\right]$ [/mm]

und analog:

ii) $E[Q] = [mm] E[\frac{1}{B}E[A|X]]$ [/mm]

und natürlich:

$E[Q] = E[E[Q|X]] = [mm] E\left[E[A|X]*E\left[\frac{1}{B}|X\right]\right]$ [/mm]

aber ob das hilft...

Gruß,
Gono

Bezug
                
Bezug
Division abhängiger ZV: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:17 So 12.04.2015
Autor: wiwi2k

Hallo Gono,

wenn wir die Aufgabenstellung sinnvoll präzisieren und davon ausgehen, dass

$A = aX + [mm] u_1$ [/mm] und
$B = bX + [mm] u_2$, [/mm] wobei

[mm] $cov(u_1, u_2) [/mm] = 0$, dann sollte doch folgendes gelten:

[mm] E[\frac{A}{B}] [/mm] = [mm] E[\frac{aX + u_1}{bX + u_2}] [/mm] =  
[mm] E[\frac{aX}{bX + u_2} [/mm] + [mm] \frac{u_1}{bX + u_2}] [/mm] =
[mm] E[\frac{aX}{bX + u_2}] [/mm] + [mm] E[\frac{u_1}{bX + u_2}] [/mm]

Da [mm] u_1 [/mm] und [mm] u_2 [/mm] unabhängig sind, gilt

[mm] E[\frac{u_1}{bX + u_2}]=E[u_1*\frac{1}{bX + u_2}] [/mm] = [mm] E[u_1]*E[\frac{1}{bX + u_2}] [/mm]

Nimmt man an, dass [mm] E[u_1] [/mm] = 0 (wurde mal bei einer anderen Aufgabe gemacht), so entspräche dies:
[mm] E[u_1]*E[\frac{1}{bX + u_2}] [/mm] = 0.

Damit bliebe noch übrig:

[mm] E[\frac{aX}{bX + u_2}]. [/mm]

Da aX deterministisch sind, müsste sich das doch vereinfachen lassen zu:

[mm] aX*E[\frac{1}{bX + u_2}] [/mm] =
[mm] aX*\frac{1}{E[bX] + E[u_2]}] [/mm]

Nehmen wir weiter an, dass auch [mm] E[u_2] [/mm] = 0, so ergäbe sich letztlich:

[mm] E[\frac{A}{B}] [/mm] = [mm] \frac{aX}{bX} [/mm] = [mm] \frac{a}{b} [/mm]

Dies ist aber genau dasselbe, als würde ich sagen:

[mm] $E[\frac{A|X}{B|X}] [/mm] = [mm] \frac{E[A|X]}{E[B|X]}$, [/mm] bzw. da X der einzige externe Faktor im Zähler und Nenner ist sogar

[mm] $E[\frac{A}{B}] [/mm] = [mm] \frac{E[A]}{E[B]}$ [/mm]

Ist das richtig oder habe ich da irgendwo einen Fehler in der Umformung eingebaut?

Bezug
                        
Bezug
Division abhängiger ZV: Antwort
Status: (Antwort) fertig Status 
Datum: 15:20 So 12.04.2015
Autor: Gonozal_IX

Hiho,

> Da [mm]u_1[/mm] und [mm]u_2[/mm] unabhängig sind, gilt
>
> [mm]E[\frac{u_1}{bX + u_2}]=E[u_1*\frac{1}{bX + u_2}][/mm] = [mm]E[u_1]*E[\frac{1}{bX + u_2}][/mm]

Nein. [mm] u_1 [/mm] ist war unabhängig von [mm] u_2 [/mm] aber nicht von X. Warum sollte [mm] u_1 [/mm] dann unabhängig sein von $bX + [mm] u_2$? [/mm] (Ist es im Allgemeinen auch nicht)
Darum funktioniert der Umformungsschritt nicht.

> [mm]E[\frac{aX}{bX + u_2}].[/mm]
>  
> Da aX deterministisch sind

Warum sollten sie das sein? Sind sie im Allgemeinen ja auch gar nicht. X ist eine Zufallsvariable und damit eher nicht deterministisch. Insbesondere: Wäre aX deterministisch, so insbesondere auch X und damit wären A und B unabhängig von X, da Zufallsvariablen von deterministischen Größen immer unabhängig sind. Und das sind sie nach Voraussetzung ja eben gerade nicht.

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]