matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesDoppelsummen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Sonstiges" - Doppelsummen
Doppelsummen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Doppelsummen: Hi
Status: (Frage) beantwortet Status 
Datum: 19:05 Mi 28.11.2012
Autor: looney_tune

Aufgabe
i,j [mm] \in \IN: [/mm]
[mm] a_{i,j}=\begin{cases} 1, & \mbox{falls } \mbox{ i=j} \\ -1, & \mbox{falls} \mbox{ i=j+1} \\ 0, & \mbox{sonst} \end{cases} [/mm]

ich soll klären, ob die Aussage richtig ist:

[mm] \summe_{i=1}^{\infty}\summe_{j=1}^{\infty} a_{i,j} [/mm] = [mm] \summe_{j=1}^{\infty}\summe_{i=1}^{\infty}a_{i,j} [/mm]

eigentlich scheint mir diese Aussage richtig zu sein, weil bei der Definition von [mm] a_{i,j} [/mm] steht ja, dass wenn i=j ist, dann ist [mm] a_{i,j} [/mm] = 1
das würde heißen, dass ich auf beiden Seiten unendlich viele Summanden als 1 hätte, und dies wäre ja gleich.
Doch ich wusste nicht mehr, ob ich meine Überlegung auf das Unendliche einfach so übertragen kann, weil ich hier ja eine unendliche Reihe habe, gilt die Gleichheit, dann trotzdem?

        
Bezug
Doppelsummen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:25 Mi 28.11.2012
Autor: Event_Horizon

Hallo!

Im Prinzip ist [mm] a_{i,j} [/mm] eine Matrix, die fast nur aus Nullen besteht. Nur in der Diagonalen stehen Einsen, und unter jeder 1 steht eine -1.

Dein Ausdruck summiert nun alle Elemente der Matrix auf, die linke Version Spalt für Spalte, die rechte Zeile für Zeile.

Eigentlich sollten beide Summen daher äquivalent sein. Allerdings sehe ich grade dein Problem:

- Die Summe der ersten Zeile ist 1, die aller nachfolgenden ist 0.

- Die Summe der ersten Spalte ist 0, genauso wie die Summe aller nachfolgenden Spalten

Vielleicht sollte da doch nochmal jemand etwas genauer drüber gucken, der davon mehr versteht.

Bezug
        
Bezug
Doppelsummen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:09 Mi 28.11.2012
Autor: Helbig


> i,j [mm]\in \IN:[/mm]
>  [mm]a_{i,j}=\begin{cases} 1, & \mbox{falls } \mbox{ i=j} \\ -1, & \mbox{falls} \mbox{ i=j+1} \\ 0, & \mbox{sonst} \end{cases}[/mm]
>  
> ich soll klären, ob die Aussage richtig ist:
>  
> [mm]\summe_{i=1}^{\infty}\summe_{j=1}^{\infty} a_{i,j}[/mm] =
> [mm]\summe_{j=1}^{\infty}\summe_{i=1}^{\infty}a_{i,j}[/mm]
>  eigentlich scheint mir diese Aussage richtig zu sein, weil
> bei der Definition von [mm]a_{i,j}[/mm] steht ja, dass wenn i=j ist,
> dann ist [mm]a_{i,j}[/mm] = 1
>  das würde heißen, dass ich auf beiden Seiten unendlich
> viele Summanden als 1 hätte, und dies wäre ja gleich.
>  Doch ich wusste nicht mehr, ob ich meine Überlegung auf
> das Unendliche einfach so übertragen kann, weil ich hier
> ja eine unendliche Reihe habe, gilt die Gleichheit, dann
> trotzdem?

Hallo, looney_tune,

Du hast auf keiner Seite unendlich viele Einsen zu summieren!

Für $i=1$ ist [mm] $\sum_{j=1} ^\infty a_{i, j}= [/mm] 1$, da [mm] $a_{1,1}=1$ [/mm] ist und für die anderen $j$ die [mm] $a_{1, j}$ [/mm] verschwinden.

Für $i>1$ ist [mm] $\sum_{j=1} ^\infty a_{i, j} [/mm] = 0$, da [mm] $a_{i ,i} [/mm] = 1$ ist, [mm] $a_{i, i-1} [/mm] = -1$ ist und für die anderen Indexpaare die [mm] $a_{i,j}$ [/mm] verschwinden.

Damit ist die linke Seite gleich 1.

Und jetzt bestimme den Wert der rechten Seite.

Gruß,
Wolfgang

Bezug
                
Bezug
Doppelsummen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:15 Do 29.11.2012
Autor: looney_tune

Hallo Wolfgang,

für j=1 ist [mm] \sum_{i=1} ^\infty a_{i, j}= [/mm] 1, da [mm] a_{1, 1}=1 [/mm] ist, für andere i verschwindet [mm] a_{i,1} [/mm]

für j > 1 ist [mm] \sum_{i=1}^\infty a_{i, j}= [/mm] -1 , [mm] a_{j,j}=1 [/mm] , [mm] a_{j,j+1}= [/mm] -1

Damit wäre die rechte Seite gleich 0.

Bezug
                        
Bezug
Doppelsummen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:31 Do 29.11.2012
Autor: looney_tune

ich habe auch noch mal eine Frage zur Matrixschreibweise,
also die linke Seite sieht doch so aus :

1 +0+0+0+....
-1 +1+0+0+...
0  +0-1+1+...
.     .   .   .
.     .   .   .

muss ich jetzt auf der rechten Seite zuerst die j-Werte eintragen?



Bezug
                                
Bezug
Doppelsummen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:39 Do 29.11.2012
Autor: looney_tune

sieht dann die Matrix der rechten Seite so aus:

1-1+0+0+0...
0+1-1+0+0...
0+0+1-1+0...
0+0+0+1-1...
.  .     .   .   .




Bezug
                                
Bezug
Doppelsummen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:47 Do 29.11.2012
Autor: Event_Horizon

Hallo!

Die Matrix bleibt die gleiche, das ist ja nur eine Tabelle, die die Werte von [mm] a_{i,j} [/mm] etwas anschaulicher darstellt.

Es geht eben nur darum, ob du beim Addieren aller Elemente zeilenweise oder spaltenweise vorgehst. Das ist der Unterschied zwischen den beiden Seiten der Gleichung.

Bezug
                                        
Bezug
Doppelsummen: Hey
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:57 Do 29.11.2012
Autor: looney_tune

achso super vielen Dank, habs endlich verstanden.

Bezug
                        
Bezug
Doppelsummen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:00 Do 29.11.2012
Autor: M.Rex

Hallo

Schau dir mal die Matrix an. In der ersten Spalte hast du keine -1, in allen anderen je eine 1 und eine -1. Das heisst, wenn du zuerst die Spalten addierst, bekommst du [mm] 1+0+\ldots0=1 [/mm]

Addierst du aber die Zeilen zuerst, addierst du lauter Nullen.

Damit du ein Gefühl für diese Summen bekommst, überlege mal, ob das ao auch für $ [mm] \summe_{i=1}^{n}\summe_{j=1}^{n} a_{i,j} [/mm] $, also für eine "endliche Matrix" gelten würde.

Überlege auch mal, was passieren würde, wenn du keine quadratische Matrixdarstellung hättest, also $ [mm] \summe_{i=1}^{n}\summe_{j=1}^{m} a_{i,j} [/mm] $. Was passiert hier, wenn m>n und was, wenn m<n?

Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]