Drehmatrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Zeigen Sie, dass die (2x2)-Drehmatrizen zusammen mit der Matrix-Multiplikation eine
abelsche Gruppe bilden |
abelsche Gruppe ist a [mm] \circ [/mm] b = b [mm] \circ [/mm] a und eine Drehmatrix ist ja
[mm] \pmat{ cos\alpha & -sin\alpha \\ sin \alpha & cos \alpha} [/mm] aber wie weise ich das nach?
danke schon mal
|
|
|
|
> Zeigen Sie, dass die (2x2)-Drehmatrizen zusammen mit der
> Matrix-Multiplikation eine
> abelsche Gruppe bilden
> abelsche Gruppe ist a [mm]\circ[/mm] b = b [mm]\circ[/mm] a und eine
> Drehmatrix ist ja
> [mm]\pmat{ cos\alpha & -sin\alpha \\ sin \alpha & cos \alpha}[/mm]
> aber wie weise ich das nach?
> danke schon mal
Hallo,
zunächst einmal musst du nicht nur [mm] a\circ b=b\circ [/mm] a zeigen, sondern alle Gruppenaxiome nachweisen und zusätzlich muss eben noch die Kommutativität gelten.
Wie du das machst? Genauso wie bei jeder anderen Gruppe auch.
Schreib erstmal die Axiome hin. Bei der Kommutativität beispielsweise nimmst du dir dann zwei Elemente deiner Menge, also Drehmatrizen, A und B, und dann zeigst du eben einfach AB=BA.
Entsprechend für die anderen Axiome.
Gruß Sleeper
|
|
|
|
|
ich dachte abelsche Gruppe heißt einfach nichts anderes als Kommutativität also a [mm] \circ [/mm] b = b [mm] \circ [/mm] a warum muss ich da Axiome nachweisen und wie kann ich das allgemein für Drehmatrizen nachweisen dass die kommutativität gilt?
|
|
|
|
|
> ich dachte abelsche Gruppe heißt einfach nichts anderes als
> Kommutativität also a [mm]\circ[/mm] b = b [mm]\circ[/mm] a warum muss ich da
> Axiome nachweisen und wie kann ich das allgemein für
> Drehmatrizen nachweisen dass die kommutativität gilt?
Nein, wie bereits schon erwähnt: Eine abelsche Gruppe ist natürlich auch eine Gruppe. Zusätzlich zu den Gruppenaxiomen, ist die Verknüpfung aber auch noch abelsch (=kommutativ).
Was sind denn nun die Gruppenaxiome, also wann ist eine Menge mit einer Verknüpfung eine Gruppe?
Du weißt ja wie deine Drehmatrizen aussehen. Nun nimm dir doch mal zwei beliebige solcher Matrizen raus, nenne sie A und B. Nimm meinetwegen beliebige Winkel, einmal [mm] \alpha [/mm] und [mm] \beta.
[/mm]
Was du nur noch machen musst, ist [mm] A\cdot B \mbox{ und } B\cdot A[/mm] ausrechnen. Da muss das selbe Ergebnis rauskommen. Damit hast du die Eigenschaft "abelsch" gezeigt.
Gruß Sleeper
|
|
|
|